Biết a,b,c là độ dài 3 cạnh của một tam giác. Chứng minh rằng: \(\frac{a}{b+c-a}+\frac{b}{c+a-b}+\frac{c}{a+b-c}\ge\frac{\left(a+b+c\right)^3}{9abc}\)
cho a,b,c>0 .Chứng minh \(\left(\frac{a}{b+c}\right)^3+\left(\frac{b}{c+a}\right)^3+\left(\frac{c}{a+b}\right)^3\ge\frac{1}{4}.\left(\frac{a^3}{b^3+c^3}+\frac{b^3}{c^3+a^3}+\frac{c^3}{a^3+b^3}\right)\)
Cho a, b, c là các số thực dương tùy ý. Chứng minh rằng:
\(\left(a^3+b^3+c^3\right)\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\ge\frac{3}{2}\left(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\right)\)
Chứng minh BĐT với a,b,c>0: \(\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^2\ge\frac{3}{2}\left(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\right)\)
Cho a,b,c>0. Chứng minh rằng:
\(\frac{a^6}{b^3\left(c+a\right)}+\frac{b^6}{c^3\left(a+b\right)}+\frac{c^6}{a^3\left(b+c\right)}\ge\frac{ab+bc+ca}{2}\)
a) cho x,y,z là các số thực dương. . Chứng minh rằng: \(\sqrt{\left(x+y\right)\left(x+z\right)}\ge x+\sqrt{yz}\)
b) cho a,b,c là số đo ba cạnh của tam giác. Chứng minh rằng:
\(\frac{\sqrt{a}}{b+c-a}+\frac{\sqrt{b}}{c+a-b}+\frac{\sqrt{c}}{a+b-c}\ge\frac{a+b+c}{\sqrt{abc}}\)
Cho tam giác AB có AB=c, BC=a, CA=b
CMR: a) (b+c-a) (c+a-b) (a+b-c) \(\le\)abc (1)
b) \(\frac{a}{b+c-a}+\frac{b}{c+a-b}+\frac{c}{a+b-c}\ge3\left(2\right)\)
c) \(\frac{a^2}{b+c-1}+\frac{b^2}{c+a-b}+\frac{c^2}{a+b-c}\ge a+b+c\left(3\right)\)
Chứng minh rằng: \(\left(a+\frac{1}{b}\right).\left(b+\frac{1}{c}\right).\left(c+\frac{1}{a}\right)\ge\left(\frac{10}{3}\right)^2\)với a,b,c >0 và a+b+c=1.
Cho a,b,c là độ dài 3 cạnh của tam giác,chứng minh BĐT sau
\(\sqrt{\frac{a}{b+c-a}}+\sqrt{\frac{b}{a+c-b}}+\sqrt{\frac{c}{a+b-c}}\ge3\)