Biết: \(\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}=4;a'+b'+c'\ne0;a'-3b'+2c'\ne0\)
Tính: \(\frac{a-3b+2c}{a'-3b'+2c'}\)
Cho \(\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}=4\) với a', b', c' # 0
Tìm: \(P=\frac{a-3b+2c}{a'-3b'+2c'}\)
\(Q=\frac{a+b+c}{a'+b'+c'}\)
cho \(\frac{a}{b}=\frac{c}{d}\)b,d khác 0 CMR \(\frac{2a+3b}{a+b}=\frac{2c+3d}{c+d}\)
Cho a, b, c>0 và\(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}\)
Tính Q=\(\dfrac{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}\)
Help!!!
Cho a,b,c>0 và dãy tỉ số \(\frac{2b+c-a}{a}\)=\(\frac{2c-b+a}{b}\)=\(\frac{2a+b-c}{c}\)
Tính P=\(\frac{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}\)
Cho a/b = c/d . Chứng minh :
a) \(\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\)
b) \(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)
Cho tỉ lệ thức : a/b = c/d. Chứng minh
2a+3b/2a-3b = 2c+3d/ 2c-3d
Chứng minh a/b=c/d nếu biết:
1.a/a+c=b/b+d
2.a+c/a=b+d/b
3.a+c/b+d=a-c/b-d
4.a/c=a+b/c+d
5.2a+3b/2c+3d=4a-5b/4c-5d
Cho a, b, c > 0 và dãy tỉ số bằng nhau:
\(\frac{2b+c-a}{a}=\frac{2c-b+a}{b}=\frac{2a+b-c}{c}\)
Tính: P = \(\frac{\left(3a-2b\right).\left(3b-2c\right).\left(3c-2a\right)}{\left(3a-c\right).\left(3b-a\right).\left(3c-b\right)}\)