Ta có: \(S=2^2+4^2+6^2+...+20^2\)
\(\Rightarrow S=\left(2.1\right)^2+\left(2.2\right)^2+\left(2.3\right)^2+...+\left(2.10\right)^2\)
\(\Rightarrow S=2^2.1^2+2^2.2^2+2^2.3^2+...+2^2.10^2\)
\(\Rightarrow S=2^2\left(1^2+2^2+3^2+...+10^2\right)\)
\(\Rightarrow S=2^2.385\)
\(S=1540\)
Vậy S = 1540
Ta có:
S = 22 + 42 + .... + 202
= 22 (12 + 22 + 32 + .... + 102 ) (1)
Mà 12 + 22 + 32 + ..... + 102 = 385 (2)
nên thay (2) vào (1) ta được:
S = 22 . 385 = 1540.
Vậy S = 1540.