Biến đổi thành tổng:
A=Cosa.Cosb.Cosc
B=4Sin2a.Sin4a.Sin6a
C=\(Sin\left(x+\dfrac{\Pi}{6}\right).Sin\left(x-\dfrac{\Pi}{6}\right).Cos2x\)
Rút gọn:
C= \(sin^2\dfrac{\pi}{3}+sin^2\dfrac{5\pi}{6}+sin^2\dfrac{\pi}{9}+sin^2\dfrac{11\pi}{18}+sin^2\dfrac{13\pi}{18}+sin^2\dfrac{2\pi}{9}\)
D=\(cos\left(x-\dfrac{\pi}{3}\right).cos\left(x+\dfrac{\pi}{4}\right)+cos\left(x+\dfrac{\pi}{6}\right).cos\left(x+\dfrac{3\pi}{4}\right)\)
Chứng minh rằng:
a) \(sin\left(a+b\right).sin\left(a-b\right)=sin^2a-sin^2b=cos^2b-cos^2a\)
b) \(4sin\left(x+\dfrac{\Pi}{3}\right).sin\left(x-\dfrac{\Pi}{3}\right)=4sin^2x-3\)
c) \(sin\left(x+\dfrac{\Pi}{4}\right)-sin\left(x-\dfrac{\Pi}{4}\right)=\sqrt{2}cosx\)
d) \(\dfrac{1}{sin10^0}-\dfrac{\sqrt{3}}{cos10^0}=4\)
rút gọn biểu thức \(S=sin\left(x+2017\pi\dfrac{ }{ }2\right)+2sin^2\left(x-\pi\right)+cos\left(x+2019\pi\right)+cos2x\)
Tính \(\cos\left(\dfrac{28\pi}{3}\right)+\sin\left(\dfrac{37\pi}{6}\right)+\tan\left(-\dfrac{13\pi}{4}\right)\)
Thu gọn biểu thức:
\(X=5.\cos\left(-x\right)-2.\cos\left(5\pi+x\right)+\tan\left(\dfrac{7\pi}{2}-x\right)+7\sin\left(\dfrac{11\pi}{2}-x\right)\)
Đơn giản các biểu thức sau:
G = \(cos\left(\alpha-5\pi\right)+sin\left(-\dfrac{3\pi}{2}+\alpha\right)-tan\left(\dfrac{\pi}{2}+\alpha\right).cot\left(\dfrac{3\pi}{2}-\alpha\right)\)
H = \(cot\left(\alpha-2\pi\right).cos\left(\alpha-\dfrac{3\pi}{2}\right)+cos\left(\alpha-6\pi\right)-2sin\left(\alpha-\pi\right)\)
Rút gọn \(P=\sin\left(-\alpha\right)+\sin^2\left(\pi+\alpha\right)+\cos\left(\dfrac{\pi}{2}-\alpha\right)+\cos^2\left(\pi-\alpha\right)\)
Cho \(sina=\dfrac{3}{5},cosb=-\dfrac{5}{13}\)và \(\dfrac{\pi}{2}< a,b< \pi\)
Tính \(cos\dfrac{a}{2};sin\dfrac{b}{2};tan\left(a+b\right);sin\left(a-b\right)\)
GIÚP VỚI MÌNH ĐANG CẦN GẤP