Ta có : \(\frac{\frac{1}{1-x}+\frac{1}{1+x}}{\frac{1}{1-x}-\frac{1}{1+x}}=\frac{\frac{1+x}{1-x^2}+\frac{1-x}{1-x^2}}{\frac{1+x}{1-x^2}-\frac{1-x}{1-x^2}}=\frac{\frac{1+x+1-x}{1-x^2}}{\frac{1+x-1+x}{1-x^2}}\)
\(=\frac{\frac{2}{1-x^2}}{\frac{2x}{1-x^2}}=\left(\frac{2}{1-x^2}\right)\left(\frac{1-x^2}{2x}\right)=\frac{2}{2x}=\frac{1}{x}\)
\(\frac{\frac{1}{1-x}+\frac{1}{1+x}}{\frac{1}{1-x}-\frac{1}{1+x}}< =>\left(\frac{1}{1-x}+\frac{1}{1+x}\right):\left(\frac{1}{1-x}-\frac{1}{1+x}\right)\)
<=> tự làm nha