Tập nghiệm của bất pt
a) \(\left|3x+1\right|>2\)
b) \(\left|2x-1\right|\le1\)
c) \(\left|\dfrac{2}{x-13}\right|>\dfrac{8}{9}\). Số nghiệm nguyên nhỏ hơn 13 của bất pt
d) \(\dfrac{\left|x+2\right|-x}{x}\le2\)
Cho bất phương trình: \(\left(2m-1\right)x^3+\left(3-3m\right)x^2+\left(m-4\right)x+2\ge0\)
Tìm m để tập nghiệm chứa \(\left(0;+\infty\right)\)
Tập nghiệm của bất phương trình \(\dfrac{x^2+x-1}{1-x}-x\) là
Bài 1: Cho bất phương trình \(4\sqrt{\left(x+1\right)\left(3-x\right)}\le x^2-2x+m-3\). Xác định m để bất phương trình nghiệm \(\forall x\in[-1;3]\)
Bài 2: Cho bất phương trình \(x^2-6x+\sqrt{-x^2+6x-8}+m-1\ge0\). Xác định m để bất phương trình nghiệm đúng \(\forall x\in[2;4]\)
Tập nghiệm của bất phương trình : \(\dfrac{x-1}{2-x}\ge0\) là ?
Tìm tập nghiệm của bất phương trình:\(2\left(x-4\right)\sqrt{2x+1}\ge x\sqrt{x^2+1}+x^3+x^2-3x-8\)
Tập nghiệm của bất pt
a) \(\left|x+2\right|+\left|-2x+1\right|\le x+1\)
b) \(\left|x+2\right|-\left|x-1\right|< x-\dfrac{3}{2}\)
c) \(\left|x+1\right|-\left|x-2\right|\ge3\)
d) \(\left|\dfrac{-5}{x+2}\right|< \left|\dfrac{10}{x-1}\right|\)
e) \(\left|\dfrac{2-3\left|x\right|}{1+x}\right|\le1\)
1) Điều kiện của m để bất phương trình \(\left(m^2-m\right)x\ge1-m\) có nghiệm là :
2) Hệ bất phương trình \(\left\{{}\begin{matrix}2x+7< 8x-1\\-2x+m+5\ge0\end{matrix}\right.\) vô nghiệm khi:
3) Hệ bất phương trình \(\left\{{}\begin{matrix}\left(x-3\right)^2\ge x^2+7x+1\\2m-5x\le8\end{matrix}\right.\) vô nghiệm khi:
4) Tập nghiệm của bất phương trình \(\left(x-1\right)\left(x^2-3x+2\right)< 0\) là :
5) Tập nghiệm của bất phương trình \(\left(x+3\right)\left(x^2+4x+3\right)\ge0\) là :
6) Tập nghiệm của bất phương trình \(\frac{x^2-x+1}{x-1}\ge0\) là :
cho x, y, z là nghiệm bất phương trình \(\left\{{}\begin{matrix}x^2+y^2+z^2=8\\xy+yz+zx=4\end{matrix}\right.\)
Chứng minh rằng \(-\dfrac{8}{3}\) ≤ x, y, z ≤ \(\dfrac{8}{3}\)