cho x,y,z là các số thực dương và x*y*z=1, tìm giá trị lớn nhất cúa P=1/(x+2)^2+x^2+2xy + 1/(y+2)^2+z^2+2yz + 1/(z+2)^2+x^2+2xz
Bài 1: Cho x+y+z =0 và x^2+ y^2 + z^2=14
Tính S= x^4+y^4+z^4
Bài 2: Cho 1/x +1/y +1/z= 13 và x+y+z= xyz
Tính S= 1/x^2 +1/y^2 +1/z^2
Bài 3: Cho a,b,c khác 0 và a+b+c = 0
Tính S= 1/ a^2+b^2-c^2 + 1/b^2+c^2-a^2 +1/ c^2+a^2-b^2
Bài 4: Cho x>y>0 và 3x^2+ 3y^2 = 10xy
Tính S= x-y / x+y
Bài 5: Cho a^2+4b+4 và b^2+ 4c+4 và c^2+ 4a+4 = 0
Tính S= a^18+ b^18+ c^18
3. A) Cho x, y, z khác 0 thỏa mãn: (x-y-z)2= x2+y2+z2
Chứng minh rằng: \(\frac{1}{x^3}-\frac{1}{y^3}-\frac{1}{z^3}\) = \(\frac{3}{xyz}\)
b) Cho x,y,z khác 0 thỏa mãn: (4x-3y+2z)2= 16x2+9y2+4z2.
Chứng minh rằng: \(\frac{1}{64x^3}-\frac{1}{27y^3}+\frac{1}{8z^3}\)=\(-\frac{1}{8xyz}\)
4. a)CMR: (A+B+C)3 - A3-B3-C3 = 3(A+B)(B+C)(C+A)
b) Cho P = (x+y+z)3-x3-y3-z3.
CMR:
-Nếu P =0 Thì(x11+y11)(y+z7)(z2019+x2019)=0
-Nếu x,y, z là các số nguyên cùng tính chẵn lẻ thì P chia hết cho 8, cho 24
1) cho các số a,b,c dương thỏa mãn \(a^3+b^3+c^3=3abc\). CMRa=b=c
2) cho x,y,z thỏa mãn xyz=1 và \(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\). Tính A=\(x^{2018}+2019^y-z^x\)
3) Cho \(\frac{ay-bx}{c}=\frac{cx-az}{b}=\frac{bz-cy}{a}.CMR\left(ax+by+cz\right)^2=\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)\)
bài 1: cho A= 4a2b2-(a2 + b2 - c2) trong đó a, b, c là độ dài 3 cạnh của 1 tam giác. Chứng minh A>0
bài 2 : cho các số x, y thỏa mãn đẳng thức 5x2 + 5y2 + 8xy -2x + 2y + 2 = 0.
Tính giá trị của biểu thức M= (x+y)2015 + (x-2)2016 + (y+1)2017
bài 3: cho a+b+c=5.tìm giá trị nhỏ nhất của biểu thức A= a2+b2+c2
bài 4: tìm x ∈ Z để x2 +3x - 13 chia hết cho x - 2
bài 5 : Tìm x ∈ Z để các giá trị của biểu thức M= \(\dfrac{x^2+2x-13}{x-3}\) là 1 số nguyên
cho x,y,z là các số dương thỏa mãn điều kiện x+y+z=1
tìm giá trị lớn nhất của A=\(\dfrac{x}{x+1}+\dfrac{y}{y+1}+\dfrac{z}{z+1}\)
Cho a, b, c là ba số không đồng thời bằng 0. Chứng minh rằng có ít nhất một trong các biểu thức sau đây không có giá trị dương:
\(x=\left(a+b+c\right)^2-8ab\)
\(y=\left(a+b+c\right)^2-8bc\)
\(z=\left(a+b+c\right)^2-8ac\)
Bài tập: Cho a,b,x,y là những số khác 0. Biết rằng ( a2 + b2 ).( x2 + y2 ) = ( ax + by )2. Hãy tìm hệ thức giữa bốn số a,b,x,y.
cho x,y,z là các số thực dương và\(x\cdot y\cdot z=1\), tìm giá trị lớn nhất cúa P biết
\(P=\dfrac{1}{\left(x+2\right)^2+y^2+2xy}+\dfrac{1}{\left(y+2\right)^2+z^2+2yz}+\dfrac{1}{\left(z+2\right)^2+x^2+2xz}\)