a) thay x=2 vào PT (a) ta được:
\(4+4m-m^2+m-3=0\Leftrightarrow-m^2+5m+1=0\\ \)
\(\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{5+\sqrt{29}}{2}\\m=\dfrac{5-\sqrt{29}}{2}\end{matrix}\right.\)
gọi x=x1=2, x2 là nghiệm còn lại.
theo viet x1+x2 =-2m.
=> x2=-2m-2
* \(m=\dfrac{5+\sqrt{29}}{2}.\\\Rightarrow x2=-\sqrt{29}-5-2=-7-\sqrt{29}\)
*\(m=\dfrac{5-\sqrt{29}}{2}\\ \Rightarrow x2=\sqrt{29}-5-2=-7+\sqrt{29}\)
vậy ....
câu b) bạn có thể làm tương tự
c) ta có: a=1;
\(\Delta=\left(m-2\right)^2-4\left(1-m\right)=m^2\);
*\(x=\dfrac{-b+\sqrt{\Delta}}{2a}=2018+\sqrt{2019}\\ \Leftrightarrow-\left(m-2\right)+\left|m\right|=4036+2\sqrt{2019}\)
<=>\(\left[{}\begin{matrix}\left\{{}\begin{matrix}m>0\\-m+2+m=4036+2\sqrt{2019}\left(VN\right)\end{matrix}\right.\\\left\{{}\begin{matrix}m< 0\\-m+2-m=4036+2\sqrt{2019}\end{matrix}\right.\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}m< 0\\m=-2017-\sqrt{2019}\end{matrix}\right.\)<=>\(m=-2017-\sqrt{2019}\)
* \(x=\dfrac{-b-\sqrt{\Delta}}{2a}\) (xét tương tự => vô nghiệm).
vậy \(m=-2017-\sqrt{2019}\)
a=1
\(\Delta'=\left(m-1\right)^2-\left(m^2-2m-3\right)=4\)
*\(x=\dfrac{-b'+\sqrt{\Delta'}}{a}=2004-2\sqrt{113}\)
\(\Leftrightarrow m-1+2=2004-2\sqrt{113}\Leftrightarrow m=2003-2\sqrt{113}\)
*\(x=\dfrac{-b'-\sqrt{\Delta'}}{a}=2004-2\sqrt{113}\)
\(\Leftrightarrow m-1-2=2004-2\sqrt{113}\Leftrightarrow2007-2\sqrt{113}\)