b: \(\Leftrightarrow x^2-2x+1-x+1=0\)
\(\Leftrightarrow x=1\)
b: \(\Leftrightarrow x^2-2x+1-x+1=0\)
\(\Leftrightarrow x=1\)
Giải bất phương trình :
a, \(\sqrt{5x^2+14x+9}-\sqrt{x^2-x-20}\dfrac{< }{ }5\sqrt{x+1}\)
b, \(2x\sqrt{x}+\dfrac{5-4x}{\sqrt{x}}\dfrac{>}{ }\sqrt{x+\dfrac{10}{x}-2}\)
c, \(\sqrt{3x+1}-\sqrt{6-x}+3x^2-14x-8< 0\)
Giải phương trình:
1. \(x^4-6x^2-12x-8=0\)
2. \(\dfrac{x}{2x^2+4x+1}+\dfrac{x}{2x^2-4x+1}=\dfrac{3}{5}\)
3. \(x^4-x^3-8x^2+9x-9+\left(x^2-x+1\right)\sqrt{x+9}=0\)
4. \(2x^2.\sqrt{-4x^4+4x^2+3}=4x^4+1\)
5. \(x^2+4x+3=\sqrt{\dfrac{x}{8}+\dfrac{1}{2}}\)
6. \(\left\{{}\begin{matrix}4x^3+xy^2=3x-y\\4xy+y^2=2\end{matrix}\right.\)
7. \(\left\{{}\begin{matrix}\sqrt{x^2-3y}\left(2x+y+1\right)+2x+y-5=0\\5x^2+y^2+4xy-3y-5=0\end{matrix}\right.\)
8. \(\left\{{}\begin{matrix}\sqrt{2x^2+2}+\left(x^2+1\right)^2+2y-10=0\\\left(x^2+1\right)^2+x^2y\left(y-4\right)=0\end{matrix}\right.\)
Giải phương trình:
1.\(x^2-x+2-2\sqrt{x^2-x+1}=0\)
2.\(x+\dfrac{1}{x-2}=\dfrac{x-1}{x-2}\)
giải các PT sau :
a) \(\left|2x+3\right|-\left|x\right|+\left|x-1\right|=2x+4\)
b) \(\sqrt{x}-\dfrac{4}{\sqrt{x+2}}+\sqrt{x+2}=0\)
c) \(\sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\)
d) \(x+\sqrt{x+\dfrac{1}{2}+\sqrt{x+\dfrac{1}{4}}}=4\)
e) \(\sqrt{4x+3}+\sqrt{2x+1}=6x+\sqrt{8x^2+10x+3}-16\)
f)\(\sqrt[3]{x-2}+\sqrt{x+1}=3\)
GIÚP MÌNH VỚI MÌNH ĐANG CẦN GẤP
Cho hai phương trình \(\sqrt{x-6}\)+ x3-6x2+x-6=0(1) và \(\dfrac{x^2-2\left(m+1\right)x+6m-2}{\sqrt{x-2}}\)=\(\sqrt{x-2}\)(2) (m là tham số). Số các giá trị của tham số m để phương trình (2) là phương trình hệ quả của phương trình (1).
A.0 B.1 C.2 D.3
\(x^2+x\sqrt{2\text{x}-\dfrac{3}{x}}=1+x\sqrt{x-\dfrac{2}{x}}\)
Giải phương trình
Giải pt 1) 2-\(\sqrt{\dfrac{x+2}{x-3}}=\sqrt{x+7}\)
2)tìm m để pt \(\dfrac{x-1}{x+1}-2\sqrt{\dfrac{x-1}{x+1}-3m-2=0}\) có nghiệm
Mk đang mắc ở chỗ đặt bằng t rồi chuyển đk của x về điều kiện của t
Giải các phương trình sau
a/ \(\sqrt{\dfrac{1-x}{x}}=\dfrac{2x+x^2}{1+x^2}\)
b/\(\sqrt[3]{x+2}+\sqrt[3]{x+1}=\sqrt[3]{2x^2}+\sqrt[3]{2x^2+1}\)
c/ \(\sqrt{x+2}+\sqrt{4-x}=2x^2-5x-1\)
Giải HPT:
1. \(\left\{{}\begin{matrix}x^2+y^2+\dfrac{2xy}{x+y}=1\\\sqrt{x+y}=x^2-y\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}\dfrac{1}{\sqrt{x+2}}+\dfrac{1}{\sqrt{y-1}}=\dfrac{2}{\sqrt{x+y}}\\x^2+y^2+4xy-4x+2y-5=0\end{matrix}\right.\)