a) Có \(\left(x-y\right)^2\ge0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(x-y\right)^2\ge\left(x+y\right)^2\)
\(\Leftrightarrow x^2+2xy+y^2+x^2-2xy+y^2\ge\left(x+y\right)^2\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
\(\Leftrightarrow2\ge\left(x+y\right)^2\)
\(\Leftrightarrow\left|x+y\right|\le\sqrt{2}\)
\(\Leftrightarrow-\sqrt{2}\le x+y\le\sqrt{2}\)( đpcm )
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{\pm\sqrt{2}}{2}\)
b) Áp dụng bđt Cô-si :
\(\frac{1}{x}+\frac{1}{y}\ge2\sqrt{\frac{1}{xy}}=\frac{2}{\sqrt{xy}}\)
Chứng minh tương tự rồi cộng vế ta có :
\(2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge2\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\right)\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\)( đpcm )
Dấu "=" xảy ra \(\Leftrightarrow x=y=z\)
a) Theo BĐT Bunhiacopxki suy ra \(2=2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
Do đó suy ra \(-\sqrt{2}\le x+y\le\sqrt{2}\)
b) Đặt \(\frac{1}{\sqrt{x}}=a;\frac{1}{\sqrt{y}}=b;\frac{1}{\sqrt{z}}=c\)
Cần chứng minh \(a^2+b^2+c^2\ge ab+bc+ca\Leftrightarrow\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{2}\ge0\) (đúng)
Xảy ra đẳng thức khi a = b = c hay x = y = z