Bài 3: Tính chất đường phân giác của tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Chóii Changg

bài 6:Cho tam giác ABC,đường phân giác AD.Tính tỉ số diện tích các tam giác ADB,ADC.Rút ra nhận xét về tỉ số diện tích của 2 tam giác này.

Nguyễn Lê Phước Thịnh
27 tháng 2 2021 lúc 19:36

Kẻ AH⊥BC tại H

Xét ΔABD có 

AH là đường cao ứng với cạnh BD(AH⊥BC, D∈BC)

nên \(S_{ABD}=\dfrac{AH\cdot BD}{2}\)

Xét ΔACD có

AH là đường cao ứng với cạnh CD(AH⊥BC, D∈BC)

nên \(S_{ACD}=\dfrac{AH\cdot CD}{2}\)

Ta có: \(\dfrac{S_{ABD}}{S_{ACD}}=\dfrac{AH\cdot BD}{2}:\dfrac{AH\cdot CD}{2}\)

\(\Leftrightarrow\dfrac{S_{ABD}}{S_{ACD}}=\dfrac{AH\cdot BD}{2}\cdot\dfrac{2}{AH\cdot CD}=\dfrac{BD}{CD}\)(1)

Xét ΔABC có

AD là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)(2)

Từ (1) và (2) suy ra \(\dfrac{S_{ADB}}{S_{ADC}}=\dfrac{AB}{AC}\)

Vậy: Tỉ số diện tích của hai tam giác này bằng tỉ số giữa hai cạnh kề hai đoạn thẳng được tạo bởi tia phân giác kẻ xuống cạnh tương ứng


Các câu hỏi tương tự
Chóii Changg
Xem chi tiết
Chóii Changg
Xem chi tiết
Chóii Changg
Xem chi tiết
Hằng Vu
Xem chi tiết
anh
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Ngọc
Xem chi tiết
tút tút
Xem chi tiết
Trần Ngọc Quỳnh Thy
Xem chi tiết