Bài 6.6. Một hộp đựng 10 thẻ dùng để đặt trên bàn trong quán cà phê gồm các số 1; 2; 3; 4; 5; 6; 7; 8; 9; 10. Chọn ngẫu nhiên một thẻ trong hộp để bỏ trên bàn trong quán cà phê. Tính xác suất của mỗi biến cố sau : a) “Số xuất hiện trên thể được chọn là các số chia hết cho 2 và chia hết cho 5”. b) “Số xuất hiện trên thể được rút ra là các số chia hết cho 2 nhưng không chia hết cho 5”. c) “Số xuất hiện trên thể được rút ra là các số chia hết cho 3 nhưng không chia hết cho 9Bài 6.6. Một hộp đựng 10 thẻ dùng để đặt trên bàn trong quán cà phê gồm các số 1; 2; 3; 4; 5; 6; 7; 8; 9; 10. Chọn ngẫu nhiên một thẻ trong hộp để bỏ trên bàn trong quán cà phê. Tính xác suất của mỗi biến cố sau : a) “Số xuất hiện trên thể được chọn là các số chia hết cho 2 và chia hết cho 5”. b) “Số xuất hiện trên thể được rút ra là các số chia hết cho 2 nhưng không chia hết cho 5”. c) “Số xuất hiện trên thể được rút ra là các số chia hết cho 3 nhưng không chia hết cho 9
a: \(\Omega=\left\{1;2;3;4;5;6;7;8;9;10\right\}\)
=>\(n\left(\Omega\right)=10\)
Gọi A là biến cố "Số xuất hiện trên thẻ được chọn là số chia hết cho 2 và chia hết cho 5"
Số vừa chia hết cho 2 và vừa chia hết cho 5 trong các số 1;2;3;...;10 là 10
=>A={10}
=>n(A)=1
\(P_A=\dfrac{n\left(A\right)}{n\left(\Omega\right)}=\dfrac{1}{10}\)
b: Gọi B là biến cố "Số xuất hiện trên thẻ là số chia hết cho 2 và không chia hết cho 5"
Các số chia hết cho 2 và không chia hết cho 5 trong tập hợp \(\Omega\) là 2;4;6;8
=>B={2;4;6;8}
=>n(B)=4
=>\(P\left(B\right)=\dfrac{4}{10}=\dfrac{2}{5}\)
c: Gọi C là biến cố "Số xuất hiện trên thẻ là số chia hết cho 3 và không chia hết cho 9"
Các số chia hết cho 3 nhưng không chia hết cho 9 trong tập hợp \(\Omega\) là 3;6
=>C={3;6}
=>n(C)=2
=>\(P\left(C\right)=\dfrac{2}{10}=\dfrac{1}{5}\)