Cho tam giác ABC có AB < AC . Trên cạnh AC lấy điểm I sao cho góc AIB = góc ABC . Phân giác góc A cắt BI tại K , cắt BC tại D
a) Chứng minh : tam giác ABD và tam giác AIK đồng dạng
b) Cho AB = 5cm , AC = 8, BD = . Tính DC ?
c ) Gọi M là trung điểm BC . Qua M kẻ đường thẳng song song với AD , cắt AC tại E , cắt AB tại F . C/m : EC = BF
Giúp mìnk vs ạ mìnk đg cần gấp<3
Cho tam giác ABC vuông cân tại A.Trên cạnh AB lấy H (H khác A và B) vẽ qua điểm B đường thẳng d vuông góc với đường thẳng CH tại D và cắt đường thẳng AC tại I.
a,Chứng minh tam giác IDC đồng dạng với IAB
b,Chứng minh tam giác IDA đồng dạng với ICB.Tính số đo góc IDA
Cho tam giác ABC vuông tại A ( AC > AB ), đường cao AH. Trên tia HC lấy điểm D sao cho HD = AH. Qua D kẻ đường thẳng vuông góc với BC, cắt cạnh AC tại E.
a) Chứng minh tam giác ABC đồng dạng với tam giác HAC
b) Chứng minh EC . AC = DC. BC
c) Chứng minh tam giác BEC = tam giác ADC và tam giác ABE vuông cân
Cho tam giác ABC vuông tại A có AB bằng 6 cm,AC bằng 8 cm.Vẽ đường cao AH.Chứng minh: a)tam giác HCA đồng dạng với tam giác ACB b)Tính BC,AH,CH,BH c)Vẽ đường phân giác AD của tam giác ABC Tính BD,CD d)Trên AH lấy điểm K sao cho AK bằng 3,6 cm .Từ K kẻ đường thẳng song song với BC cắt AB và AC lần lượt tại M và N.Tính diện tích tứ giác BMNC đ) Trong tam giác ADB kẻ đường phân giác DE , trong tam giác ADC kẻ đường phân giác DF Cm:EA/EB.DB/DC.FC/FA=1(Hay EA.DB.FC=EB.DC.FA)
cho tam giác ABC có ba góc nhọn (Ab<AC) có ba đường cao AD, BE, CF cắt nhau tại H. a)Cm: tam giác BFH dồng dạng tam giác CEH và FA.BH=FH.AC b)Gọi I là trung điểm BC và K đối xứng với H qua I.Cm: tam giác AKC đồng dạng tam giác AHF c)AK cắt HC tại . Lấy điểm M trên đoạn thẳng AC sao cho EF//Om.Cm:HM vuông góc AD
cho tam giác ABC vuông tại A,đường cao AH.
a. CM tam giác ABH đồng dạng với tam giác CBA
b.Gọi E là điểm tùy ý trên cạnh AB, ĐƯờng thẳng đi qua H và vuông góc với HEcawts AC tại F. Tìm vị trí của điểm E trên cạnh AB để tam giác EHFcó diện tích nhỏ nhất
Cho tam giác ABC cân tại A có AB = AC = 6cm ; BC = 4cm . Các đường phân giác BD và CE cắt nhau tại I ( E trên AB và D trên AC )
a) Tính độ dài AD , ED
b) Cm : Tam giác ADB đồng dạng với tam giác AEC
c) Cm : IE.CD = ID.BE
d) Cho \(S_{ABC}\) = 60 \(cm^2\) . Tính \(S_{AED}\)
Cho tam giác ABC vuông tại A có AH là đường cao.AB=15 AH=12
a) CM tam giác AHB đồng dạng tam giác CHA
b)Tính BH,HC,AC
c)Vẽ AM là tia phân giác góc BAC. Tính BM
d) Lấy E trên AC sao cho HE song song AB. Gọi N là trung điểm của AB,CN cắt nhau tại I. Chứng minh I là trung điểm của HE
cho tam giác abc vuông tại a ab = 9cm ac=12cm tia phân giác của góc bac cắt bc tại d từ d kẻ vuông góc với ac đường thẳng này cắt ac tại e
a, chứng minh tam giác ced đồng dạng tam giác cab
b, tính cd:de
tính diện tích tam giác abd