Cần được giải thích ạ:
Chứng minh rằng trong đa thức có các hệ số nguyên, nghiệm hữu tỉ (nếu có) phải có dạng pqpqtrong đó p là ước của hệ số tự do, q là ước dương của hệ số cao nhất.
*Chứng minh:
Giả sử đa thứ a0xn + a1xn-1+...+an-1x + an với các hệ số a0, a1, ..., an nguyên, có nghiệm hữu tỉ là x=pqpq, trong đó p,q thuộc Z, q>0, (p,q)=1
=> a0xn + a1xn-1+...+an-1x + an = (qx-p)(b0xn-1 + b1xn-2+...+bn-1)
Ta có: -pbn-1 = an.qb0 = a0 nên p là ước của an, còn q là ước dương của a0 (Em cần giải thích dòng này ạ)
Lấy VD về định lý sau:
Nếu đa thức f(x) có nghiệm hữu tỉ thì có dạng \(\dfrac{p}{q}\)trong đó p là ước của hệ số tự do,q là ước dương của hệ số cao nhất
Cho đa thức f(x)=ax^3+bx^2+cx+d. Chứng minh rằng nếu f(x) nhận giá trị nguyên với mọi giá trị nguyên của x thì d; 2b; 6a là các số nguyên
Cho đa thức: f(x)= x^4-x^3-x^2+ax+b thỏa mãn khi chia f(x) lần lượt cho các đa thức x+1 và x-3 thì có dư tương ứng là -15 và 45. Hãy xác định các hệ số a, b và tìm tất cả các nghiệm của đa thức f(x)
Cho đa thức f(x) = ax^2+bx+c. Chứng minh rằng 1 là nghiệm của đa thức nếu a+b+c=0? Để cho đa thức nhận -1 là nghiệm thì điều kiện của a,b,c như thế nào?
Cho đa thức f(x) với hệ số nguyên. a) Chứng minh với 2 số nguyên phân biệt a và b thì \(f\left(a\right)-f\left(b\right)⋮\left(a-b\right)\)
a, chứng minh đẳng thức
\(x^n-y^n=\left(x-y\right)\left(x^{n-1}+x^{n-2}y+x^{n-3}y^2+...+xy^{n-2}+y^{n-1}\right)\)
b, cho F(x) là đa thức với các hệ số nguyện. giả sử F(2011) và F(2012) là các số nguyên lẻ. chứng minh đa thức F(x) không có nghiệm nguyên
Cho g(x) là 1 đa thức với hệ số nguyên. CM: Đa thức f(x)=x2+x.g(x3)f(x)=x2+x.g(x3) không chia hết cho đa thức: x2−x+1
Cho g(x) là 1 đa thức với hệ số nguyên. CM: Đa thức \(f\left(x\right)=x^2+x.g\left(x^3\right)\) không chia hết cho đa thức \(x^2-x+1\)