a/ \(x^2\left(x-5\right)+5-x=0\)
\(\Leftrightarrow x^2\left(x-5\right)-\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\\x-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=5\end{matrix}\right.\)
Vậy...
b/ \(3x^4-9x^3=-9x^2+27x\)
\(\Leftrightarrow3x^4-9x^3+9x^2-27x=0\)
\(\Leftrightarrow3x^3\left(x-3\right)+9x\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(3x^3+9x\right)=0\)
\(\Leftrightarrow3x\left(x-3\right)\left(x^2+3\right)=0\)
Vì \(x^2+3>0\forall x\)
\(\Leftrightarrow3x\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
Vậy..
c/ \(x^2\left(x+8\right)+x^2=-8x\)
\(\Leftrightarrow x^2\left(x+8\right)+x^2+8x=0\)
\(\Leftrightarrow x^2\left(x+8\right)+x\left(x+8\right)=0\)
\(\Leftrightarrow x\left(x+8\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+8=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-8\\x=-1\end{matrix}\right.\)
Vậy...
d/ \(\left(x+3\right)\left(x^2-3x+5\right)=x^2+3x\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+5\right)-x\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-4x+5\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left[\left(x-2\right)^2+1\right]=0\)
Vì \(\left(x-2\right)^2+1>0\forall x\)
\(\Leftrightarrow x+3=0\Leftrightarrow x=-3\)
Vậy..
\(a,x^2\left(x-5\right)+5-x=0\\ \Leftrightarrow x^2\left(x-5\right)-\left(x-5\right)=0\\ \Leftrightarrow\left(x^2-1\right)\left(x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=5\end{matrix}\right.\)
\(b,3x^4-9x^3=-9x^2+27x\\ \Leftrightarrow3x^4-9x^3+9x^2-27x=0\\ \Leftrightarrow3x^3\left(x-3\right)+9x\left(x-3\right)=0\\ \Leftrightarrow3x\left(x-3\right)\left(x^2+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
do \(x^2+2>0\)
\(c,x^2\left(x+8\right)+x^2=-8x\\ \Leftrightarrow x^2\left(x+8\right)+x^2+8x=0\\ \Leftrightarrow x^2\left(x+8\right)+x\left(x+8\right)=0\\ \Leftrightarrow x\left(x+1\right)\left(x+8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=-8\end{matrix}\right.\)
\(d,\left(x+3\right)\left(x^2-3x+5\right)=x^2+3x\\ \Leftrightarrow\left(x+3\right)\left(x^2-3x+5\right)-x^2-3x=0\\ \Leftrightarrow\left(x+3\right)\left(x^2-3x+5\right)-x\left(x+3\right)=0\\ \Leftrightarrow\left(x+3\right)\left(x^2-3x+5-x\right)=0\\ \Leftrightarrow\left(x+3\right)\left(x^2-4x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-3\\x^2-4x+5=0\end{matrix}\right.\)
\(\Delta=b^2-4ac=\left(-4\right)^2-4\cdot1\cdot5=16-20=-4< 0\)\(\rightarrow\)\(x^2-4x+5\) vô nghiệm
Vậy \(x=-3\)