Sử dụng đánh giá quen thuộc: \(x^3+y^3\ge xy\left(x+y\right)\)
\(VT\le\dfrac{1}{ab\left(a+b+c\right)}+\dfrac{1}{bc\left(a+b+c\right)}+\dfrac{1}{ca\left(a+b+c\right)}\)
\(VT\le\dfrac{1}{a+b+c}\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)=\dfrac{a+b+c}{\left(a+b+c\right)abc}=\dfrac{1}{abc}\)