1.Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B và SA vuông góc với mặt phẳng (ABC).
a. Chứng minh (SBC) ⊥ (SAB).
b. Tính góc giữa hai mặt phẳng (SBC) và (ABC), biết AC=a√3 , SA= a√6 , BC = a
2.Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA ⊥ (ABCD) và SA= a√2/2
a. Chứng minh (SAC)⊥ (SBD).
b. Tính góc giữa hai mặt phẳng (SBD) và (ABCD)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh a, cạnh bên SA vuông góc với đáy và SA = . Gọi AE, AH lần lượt là các đường cao của ΔSAB và ΔSAD
1) Chứng minh rằng: BC ⊥ (SAB), BD ⊥ (SAC)
2) Chứng minh rằng: (SAD) ⊥ (SDC)
3) Chứng minh rằng: AE ⊥ SC và AH ⊥ SC
4) Tính góc giữa: đường thẳng SC và mặt phẳng (SAB), đường thẳng SB và mặt phẳng (SAC)
5) Tính góc giữa (SBD) và (ABCD)
6) Tính khoảng cách từ điểm O đến mặt phẳng (SCD)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh a, cạnh bên SA vuông góc với đáy và SA = \(\text{a}\sqrt{3}\). Gọi AE, AH lần lượt là các đường cao của ΔSAB và ΔSAD
1) Chứng minh rằng: BC ⊥ (SAB), BD ⊥ (SAC)
2) Chứng minh rằng: (SAD) ⊥ (SDC)
3) Chứng minh rằng: AE ⊥ SC và AH ⊥ SC
4) Tính góc giữa: đường thẳng SC và mặt phẳng (SAB), đường thẳng SB và mặt phẳng (SAC)
5) Tính góc giữa (SBD) và (ABCD)
6) Tính khoảng cách từ điểm O đến mặt phẳng (SCD)
Mình cần gấp lắm , giải thích từ từ hộ mình
Cho hình chóp S.ABC có đáy là tam giác ABC vuông tại B, Có AB = a, AC = 2a và cạnh bên SA vuông góc với đáy. Biết góc giữa hai mặt phẳng (SBC) và (ABC) bằng 60 độ .
1) Tính góc giữa SC và mặt phẳng (ABC).
2) Tính theo a khoảng cách từ là trọng tâm G của tam giác SAB đến mặt phẳng (SBC).
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a. Góc (BAD)= 60. Tam giác SAD là tam giác cân đỉnh S và nằm trong mặt phẳng vuông góc với đáy, SA= \(\dfrac{a\sqrt{5}}{4}\) Gọi M, N, P lần lượt là trung điểm AD, DC và SB
a, Chứng minh SM ⊥ (ABCD), (SBD) ⊥ (SMN)
b, Tính góc giữa M và (SAC)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh SA ⊥ (ABCD) và SA = 3a.
a) Chứng minh AD ⊥ (SAB) và AB ⊥ (SAD)
b) Kẻ đường cao AM trong tam giác SAB. Chứng minh rằng AM ⊥ SC
c) Tính góc giữa đường thẳng SB và (SAC)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh SA ⊥ (ABCD) và SA = 3a.
a) Chứng minh AD ⊥ (SAB) và AB ⊥ (SAD)
b) Kẻ đường cao AM trong tam giác SAB. Chứng minh rằng AM ⊥ SC
c) Tính góc giữa đường thẳng SB và (SAC)
cho hình chóp S.ABCD có ABCD là hình vuông cạnh a, SA vuông góc (ABCD), SA=a căn 2
1.chứng minh : các mặt bên của hình chóp là tam giác vuông
2. (SAC) vuông góc (SBD)
3.Tính (SC,(SAB))
4.tan ((SBD),(ABCD))
5.d(A,(SBC)),d(A,(SCD))
6.d(SC,BD)
7.Hãy chỉ ra điểm I cách đều S,A,B,C,D. tính SI
Cho hình chóp S.ABCD có đáy ABCD là hình vuông, SA vuông góc với mặt phẳng đáy, SA = \(a\sqrt{2}\), góc giữa đường thẳng SC và mặt phẳng đáy bằng 45o. Gọi M là trung điểm của cạnh AB. Tính theo a khoảng cách h giữa hai đường thẳng DM và SB.
Help me!!!!
Gấp lắm ạ