Bài 4:Cho tam giác ABC cân tại a.Kẻ BN và CM lần lượt vuông góc vs AC và AB
a,CMR BN =CM
b,CMR góc ABN = góc ACM
c,BN cắt CMtaij HTam giác BHC là tam giác j .Tại sao?
d,CMR MN //BC
e,gọi D là trung điểm BC.CMR A;H;D thăng hàng
Các bạn giúp mk phần d và e thôi chứ ko cần làm cả bài 4 đâu
Bài 5:Cho tam giác ABC vuông cân tại A,Mlaf trung điểm BC,Điểm E nằm giữa M và C.Kẻ BH,CK vuông góc vs AE(H thuộc đt AE).CMR
a, BH =AK
b,tam giác MBH=tam giácMAK
c,tam giác MHK là tam giác vuông cân
phần a, mk làm r ,giúp mk phần b;c thôi nha ;-;
ok giúp mk nha ;-;
Bài 4:
b) Ta có: ΔABN=ΔACM(cmt)
nên \(\widehat{ABN}=\widehat{ACM}\)(hai góc tương ứng)
4d) Ta có : AB=BM+MA
AC=CN+NA
MÀ : AB=AC
BM=CN
⇒MA=NA
⇒ΔAMN CÂN TẠI A\
TRONG ΔAMN CÂN TẠI
TA CÓ : \(\widehat{A}+\widehat{M}+\widehat{N}\)=180
⇒\(\widehat{A}+\widehat{2M}=180\)
⇒\(\widehat{2M}\)=180-\(\widehat{A}\)
⇒\(\widehat{M}\)=\(\dfrac{180-\widehat{A}}{2}\)
TRONG ΔABC CÂN TẠI A
TA CÓ : \(\widehat{A}+\widehat{B}+\widehat{C}\)=180
⇒\(\widehat{A}+\widehat{2B}=180\)
⇒ \(\widehat{2B}=180-\widehat{A}\)
⇒\(\widehat{B}\)=\(\dfrac{180-\widehat{A}}{2}\)
⇒\(\widehat{B}=\widehat{M}\)(ĐỒNG VỊ)
⇒MN//BC