a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
góc A chung
=>ΔAHB đồng dạng vơi ΔAKC
b: Xét ΔIKB vuông tại K và ΔIHC vuông tại H có
góc KIB=góc HIC
=>ΔIKB đồng dạng với ΔIHC
=>IK/IH=IB/IC
=>IK*IC=IH*IB
a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
góc A chung
=>ΔAHB đồng dạng vơi ΔAKC
b: Xét ΔIKB vuông tại K và ΔIHC vuông tại H có
góc KIB=góc HIC
=>ΔIKB đồng dạng với ΔIHC
=>IK/IH=IB/IC
=>IK*IC=IH*IB
Cho AABC (AB < AC) có ba góc nhọn, đường cao AH. Kẻ HELAB và HFLAC (E & AB; Fe AC). a) Chứng minh: AAEH-AAHB. b) Chứng minh: AE AB = AH và AE AB = AF. AC. c) Chứng minh: AAFE và AABC đồng dạng. d) Đường thẳng EF cắt đường thẳng BC tại M. Chứng tỏ rằng: MB.MC = ME.MF.
Cho tam giác ABC nhọn (AB < AC) có hai đường cao AD và BE cắt nhau tại H. a) Chứng minh tam giác HEA đồng dạng tam giác HDB. b) Kẻ DK vuông góc AC tại K. Chứng minh CD2 = CK.CA c) Gọi N là trung điểm của CK. Trên tia đối của tia AD lấy điểm F sao cho AF = AD. Chứng minh FK vuông góc DN tại S.
cho tam giác ABC vuông tại A ( AB<AC) có đường cao AH. Gọi M là trung điểm của AC, BM cắt AH tại I. vẽ AK vuông góc với BM tại K,
a) chứng minh : tam giác BHI đồng dạng với tam giác AKI và IB. IK = IA.IH
b) chứng minh: góc BAH = góc BKH
c) tia AK cắt BC tại D. Chứng minh: HD.KC = HK.DC
Mọi người ơi làm giúp mình bài này với ạ
Cho tam giác ABC nhọn(AB<AC) có 2 đường cao BD và CE cắt nhau tại H.
1.Chứng minh tam giác ABD đồng dạng với tam giác ACE
2. Chứng minh HD.HB= HC.HE
3.AH cắt BC tại F. Kẻ FI vuông góc với AC tại I. Chứng minh IF/IC=FA/CF
4. Trên tia đối của AF lấy điểm N sao cho AN=AF. Gọi M là trung điểmcủa cạnh IC. Chứng minh NI=FM.
Cho △ABC có 3 góc nhọn. Ba đường cao AD, BE, CF cắt nhau tại H.
a) Chứng minh △AEB đồng dạng △AFC
b) Chứng minh góc ABC = góc ABC
c) Kéo dài EF và BC cắt nhau tại \(I\) . Gọi M là trung điểm của BC. Chứng minh \(IE.IF=IM^2-\dfrac{BC^2}{4}\)
GIÚP MIK VỚI :(((
Bài 14: Cho∆ABC có ba góc nhọn AB < AC. Các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC, K là điểm đối xứng với H qua M.
a) Chứng minh: Tứ giác BHCK là hình bình hành.
b) Chứng minh: BK ⊥AB và CK ⊥AC.
c) Gọi I là điểm đối xứng của H qua BC. CMR: Tứ giác BIKC là hình thang cân.
d) BK cắt HI tại G, Tam giác ABC có thêm điều kiện gì để tứ giác GHCK là hình thang cân.
CẦN GẤP Ạ
Cho tam giác ABC nhọn (AB < AC) đường cao AH (H thuộc BC) kẻ HK vuông góc với AC (K thuộc AC)
a/ Chứng minh tam giác AHC đồng dạng với tam giác HKC
b/ Chứng minh KH^2=AK.AC
c/ Biết AH=3cm, HC=4cm. Tính diện tích tam giác AHC/diện tích tam giác HKC
CẦN GẤP Ạ
Cho tam giác ABC nhọn (AB < AC) đường cao AH (H thuộc BC) kẻ HK vuông góc với AC (K thuộc AC)
a/ Chứng minh tam giác AHC đồng dạng với tam giác HKC
b/ Chứng minh KH^2=AK.AC
c/ Biết AH=3cm, HC=4cm. Tính diện tích tam giác AHC/diện tích tam giác HKC