Bài 3 phân tích đa thức sau thành nhân tử :
a)\(27x^3\)+\(\frac{y^3}{8}\)
b) 10x(x-y)-8(y-x)
b)\(x^3+y^3+z^3-3xyz\)
c) \(x^{m+2}+x^m\)
d) \(x^{k+1}-x^{k-1}\)
f)\(\left(a+b-c\right)x^2-\left(c-a-b\right)x\)
e)\(\left(a-2b\right)^{3n+1}\)
g)\(x^3+y^3+z^3-3xyz\)
k)(\(8x^3+12x^2+6x+1m\))\(8a^3-12a^2b+6ab^3\)
n)\(\left(x+y\right)^3-x^3-y^3\)
a) Ta có: \(27x^3+\frac{y^3}{8}\)
\(=\left(3x\right)^3+\left(\frac{y}{2}\right)^3\)
\(=\left(3x+\frac{y}{2}\right)\left(9x^2-\frac{3xy}{2}+\frac{y^2}{4}\right)\)
b) Ta có: \(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3-3x^2y-3xy^2+z^3-3xyz\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2-3xy\right]\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)
c) Ta có: \(x^{m+2}+x^m\)
\(=x^m\cdot x^2+x^m\)
\(=x^m\left(x^2+1\right)\)
d) Ta có: \(x^{k+1}-x^{k-1}\)
\(=x^{k-1}\cdot x^2-x^{k-1}\cdot1\)
\(=x^{k-1}\left(x^2-1\right)\)
\(=x^{k-1}\cdot\left(x-1\right)\left(x+1\right)\)
f) Ta có: \(\left(a+b-c\right)\cdot x^2-\left(c-a-b\right)x\)
\(=x^2\left(a+b-c\right)+x\left(a+b-c\right)\)
\(=x\left(a+b-c\right)\left(x+1\right)\)
e) Ta có: \(\left(a-2b\right)^{3n+1}\)
\(=\left(a-2b\right)^{3n}\cdot\left(a-2b\right)\)
n) Ta có: \(\left(x+y\right)^3-x^3-y^3\)
\(=\left(x+y\right)^3-\left(x^3+y^3\right)\)
\(=\left(x+y\right)^3-\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=\left(x+y\right)\left(x^2+2xy+y^2-x^2+xy-y^2\right)\)
\(=3xy\left(x+y\right)\)