Cho tam giác ABC vuông góc tại đỉnh A. Đường cao AH, dựng về phía ngoài tam
giác các hình vuông ABMN ,ACIK . Chứng minh rằng:
a) Ba điểm M, A, I thẳng hàng;
b) Tứ giác CKNB là hình thang cân
c) AH đi qua trung điểm D của NK và các đường thẳng AH, IK, MN , cắt nhau tại
điểm E
d) Các đường thẳng AH CM BI , đồng quy và AN2=NK2−AK2
Cho tam giác vuông ABC (AB > AC), đường cao AH. Vẽ ở phía ngoài tam giác ABC các hình vuông ABDE và ACFK. C/m rằng:
a/ D, A, F thẳng hàng
b/ BEKC là thang cân
c/ AH đi qua trung điểm I của EK
d/ Các đường thẳng AH, DE, FK đồng quy
Cho tam giác ABC nhọn (AB<AC). Vẽ về phía ngoài tam giác ABC các tam giác vuông cân tại A là ABD, ACE và hình bình hành ADKE. Chứng minh:
a. KA=BC
b. KA vuông góc BC
Bài 2. Cho tam giác ABC vuông tại A có , kẻ tia Ax song song với BC. Trên Ax lấy điểm D sao cho AD = DC.
a) .
b) Chứng minh tứ giác ABCD là hình thang cân.
c) Gọi E là trung điểm của BC. Chứng minh tứ giác ADEB là hình thoi.
Bài 3. Cho tam giác ABC có hai trung tuyến BD và CE cắt nhau tại G. Gọi M, N lần lượt là trung điểm của BG và CG.
a) Chứng minh tứ giác MNDE là hình bình hành.
b) Tìm điều kiện của tam giác ABC để tứ giác MNDE là hình chữ nhật, là hình thoi.
c) Chứng minh DE + MN = BC.
Bài 4. Cho tam giác ABC vuông ở A, đường cao AH. Kẻ HD vuông góc AB và HE vuông góc AC (D trên AB, E trên AC). Gọi O là giao điểm của AH và DE.
a) Chứng minh AH = DE.
b) Gọi P và Q lần lượt là trung điểm của BH và CH. Chứng minh tứ giác DEQP là hình thang vuông.
c) Chứng minh O là trực tâm tam giác ABQ.
d) Chứng minh SABC = 2SDEQP.
Bài 5. Cho tam giác ABC vuông tại A đường cao AH. Gọi D là điểm đối xứng với H qua AC, E là điểm đối xứng với H qua AB. Chứng minh:
a) D đối xứng với E qua A.
b) Tam giác DHE vuông.
c) Tứ giác BDEC là hình thang vuông.
d) BC = CD + BE
e) Tính độ dài đoạn thẳng ED biết AB = 6cm; AC = 8cm.
Cho tam giác ABC vuông tại A(AB<AC) có AH là đường cao . Vẽ HD vuông góc với AB tại H. Vẽ HE vuông góc với AC tại E.
a. Chứng minh tứ giác ADHE là hình chữ nhật.
b. Vẽ điểm M đối xứng với A qua E. Chứng minh tứ giác HDEM là ihnhf bình hành.
c. Gọi I là hình chiếu của A trên HM. Tính số đo DIE.
Cho tam giác ABC vuông tại A (AB<AC), đường cao AH. Từ H vẽ HE và HF lần lượt vuông góc với AB và AC ( E ϵ AB , F ϵ AC).
a) Chứng minh AH = EF .
b) Trên tia FC xác định điểm K sao cho FK = AF . Chứng minh tứ giác EHKF là hình bình hành.
c) Biết BC = 5cm, AC = 4cm. Tính diện tích tam giác ABC
Cho tam giác ABC vuông tại A đường cao AH gọi E và F lần lượt là chân các đường vuông góc hạ từ H đến AB và AC a, tứ giác AEHF là hình gì? Vì sao? b, lấy điểm M đối xứng với H qua E chứng minh tứ giác AMEF là hình bình hành C, gọi I là trung điểm của AE . HI giao với AM tại K chứng minh AK =1/3 AH d, gọi N là trung điểm của BC chứng minh EF vuông góc với AN
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D là điểm đối xứng với H qua AB, gọi E là điểm đối xứng với H qua AC
a) Chứng minh rằng D đối xứng với E qua A
b) Tam giác DHE là tam giác gì ? Vì sao ?
c) Tứ giác BDEC là hình gì ? Vì sao ?
d) Chứng minh rằng BC = BD + CE
Cho tam giác MNP vuông tại M. Điểm D trên cạnh NP, vẽ DE vuông góc với MN tại E, DF vuông góc với MN tại F.
a, tứ giác MEDF là hình gì?
b, Gọi MH là đường cao của tam giác MNP, Tính số đo góc EHF.
c, Khi điểm D di chuyển trên cạnh NP thì trung điểm K của EF di chuyển trên đoạn thẳng nào?