cho tam giác abc vuông tại a ab = 9cm ac=12cm tia phân giác của góc bac cắt bc tại d từ d kẻ vuông góc với ac đường thẳng này cắt ac tại e
a, chứng minh tam giác ced đồng dạng tam giác cab
b, tính cd:de
tính diện tích tam giác abd
Cho tam giác ABC vuông tại A ( AC > AB ), đường cao AH. Trên tia HC lấy điểm D sao cho HD = AH. Qua D kẻ đường thẳng vuông góc với BC, cắt cạnh AC tại E.
a) Chứng minh tam giác ABC đồng dạng với tam giác HAC
b) Chứng minh EC . AC = DC. BC
c) Chứng minh tam giác BEC = tam giác ADC và tam giác ABE vuông cân
1) Cho tam giác ABC vuông tại A , AB < AC , đường phân giác AD . Đường vuông góc với DC tại D cắt AC ở E . Chứng minh rằng:
a) Tam giác ABC và tam giác DEC đồng dạng
b) DE=BC
Cho tam giác ABC vuông tại A , biết AB=12cm , AC= 16cm kẻ AH vuông góc với BC ( H thuộc BC)
a. chứng minh tam giác ABC đồng dạng với tam giác HBA
b.tính BC, AH , HB
c. Kẻ đường phân giác BD , tính AD/CD
cho hình chữ nhật ABCD có AB=60cm,AD=32cm.từ D kẻ đường thẳng vuông góc với đường cháo AC,đường thẳng này cắt AC tại E và AB tại F
a) chứng minh tam giác ABD đồng dạng tam giác ADC
b) cm tam giác ADF đồng dạng tam giác DCA
cho tam giác ABC có ba góc nhọn (Ab<AC) có ba đường cao AD, BE, CF cắt nhau tại H. a)Cm: tam giác BFH dồng dạng tam giác CEH và FA.BH=FH.AC b)Gọi I là trung điểm BC và K đối xứng với H qua I.Cm: tam giác AKC đồng dạng tam giác AHF c)AK cắt HC tại . Lấy điểm M trên đoạn thẳng AC sao cho EF//Om.Cm:HM vuông góc AD
Cho tam giác ABC, các đường phân giác AD, BE, CF. Gọi M là giao của BE và DF, N là giao của DE và CF a) Kẻ MI và NK sống song với AD ( I thuộc AB, K thuộc AC) Cm tam giác AIM đồng dạng với tam giác AKN b) Cm góc FAM = góc EAN
giúp mk câu c vớiiiiiiiiii
cho tam giác ABC cân ( góc A < 90 độ) đường cao AH. Trên tia đối của tia BC lấy điểm D sao cho BD = BA. Kẻ BM vuông góc AD ( M thuộc AD)
tam giác AHD đồng dạng với tam giác BMD
DB. DH = DA ^2/2
c, Tia MH cắt tia AC tại N. Chứng minh : tam giác ADB đồng dạng với tam giác NCH và CH = CN
Cho tam giác ABC vuông tại A có AB-6cm, AC -8cm, AD là tia phân giác của BAC (DEBC). b) Từ D kẻ DE vuông góc với AB tại E (E thuộc AB). Tính đo dài DE, AE và diện tích tứ giác AEDC; c) Gọi O là giao điểm của AD và CE. Qua O kẻ đường thẳng song song với AC cắt BC và AB lần lượt tại M và N. Chứng minh rằng OM=ON.