Bài 6: Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Tham Le

Bài 2:Phân tích đa thức thành nhân tử chung

a, 4(2-x)2+xy-2y

b, x(x-y)3-y(y-x)2-y2(x-y)

c, x2y-xy2-3x+3y

d, x(x+y)2-y(x+y2)+xy-x2

Minh Hiếu
28 tháng 10 2021 lúc 17:03

a) \(4\left(2-x\right)^2+xy-2y\)

\(=4\left(x-2\right)^2+\left(xy-2y\right)\)

\(=4\left(x-2\right)\left(x-2\right)+y\left(x-2\right)\)

\(=\left(x-2\right)\left(4x-8\right)+y\left(x-2\right)\)

\(=\left(x-2\right)\left(4x-8+x-2\right)\)

\(=\left(x-2\right)\left(5x-10\right)\)

\(=5\left(x-2\right)^2\)

ILoveMath
28 tháng 10 2021 lúc 17:04

a, \(=4\left(x-2\right)^2+y\left(x-2\right)=\left(x-2\right)\left(4x-8+y\right)\)

b, \(=x\left(x-y\right)^3-y\left(x-y\right)^2-y^2\left(x-y\right)=\left(x-y\right)\left[x\left(x-y\right)^2-y\left(x-y\right)-y^2\right]=\left(x-y\right)\left[x\left(x^2-2xy+y^2\right)-xy+y^2-y^2\right]=\left(x-y\right)\left(x^3-2x^2y+xy^2-xy\right)=x\left(x-y\right)\left(x^2-2xy+y^2-y\right)\)

c, \(=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\)

d, không phân tích được

Vương Cấp
28 tháng 10 2021 lúc 17:06

c, x2y - xy2 - 3x + 3y
= xy(x-y) - 3(x-y)
= (x-y)(x-3)


Các câu hỏi tương tự
ngọc hân
Xem chi tiết
Trần Khánh Linh
Xem chi tiết
Aỏiin
Xem chi tiết
thằng việt
Xem chi tiết
Bánh cá nướng :33
Xem chi tiết
Đan Linh Lê
Xem chi tiết
nhím
Xem chi tiết
nhím
Xem chi tiết
Xem chi tiết