Cho A= (\(\frac{2\sqrt{x}}{\sqrt{x+3}}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\)) : (\(\frac{2\sqrt{x-2}}{\sqrt{x-3}}-1\))
a. Rút gọn A b. Tìm x để A < \(-\frac{1}{2}\) c. Tìm x để A đạt GTNN
Cho B= (\(\frac{\sqrt{x+1}}{\sqrt{x-1}}-\frac{\sqrt{x-1}}{\sqrt{x+1}}-\frac{8\sqrt{x}}{x-1}\)) : (\(\frac{\sqrt{x-x-3}}{x-1}-\frac{1}{\sqrt{x-1}}\))
a. Rút gọn B b. Tính A với x=6-2\(\sqrt{5}\) c. CMR: A <_1
Cho P= \(\frac{x\sqrt{x}+26\sqrt{x}-19}{x+2\sqrt{x}-3}-\frac{2\sqrt{x}}{\sqrt{x-1}}+\frac{\sqrt{x}-3}{\sqrt{x}+3}\)
a. Rút gọn P b. Tính giá trị của P khi x= 7-4\(\sqrt{3}\) c. Với giá trị nào của x thì P đạt giá trị nhỏ nhất và tính giá trị nhỏ nhất đó
Bài 1: Cho P= \(\left(\frac{\sqrt{a}}{2}-\frac{1}{2\sqrt{a}}\right)^2\). \(\left(\frac{\sqrt{a}-1}{\sqrt{a}+1}-\frac{\sqrt{a}+1}{\sqrt{a}-1}\right)\)
a, Rút gọn P
b, Tìm các giá trị của a để P<0
c, Tìm các giá trị của a để P=-2
Rút gọn các biểu thức
\(A=\left(\frac{\sqrt{a}-2}{\sqrt{a}+2}-\frac{\sqrt{a}+2}{\sqrt{a}-2}\right)\left(\sqrt{a}-\frac{4}{\sqrt{a}}\right)\)
\(B=\frac{1}{1-\sqrt{a}}+\frac{a\sqrt{a}}{\sqrt{a}-1}\)
1.So sánh
a) \(\sqrt{2002}+\sqrt{2004}\) và \(2\sqrt{2003}\)
b)\(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\) và \(\sqrt{2}\)
2. Rút gọn
a) \(\frac{a^2-\sqrt{a}}{a+\sqrt{a}+1}-\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}\) với 0 ≤ a ≥ 1
b) \(\frac{a\sqrt{b}-b\sqrt{a}}{\sqrt{a}-\sqrt{b}}-\sqrt{ab}\)
c) \(\frac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\frac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\left(\frac{\sqrt{b}}{a-\sqrt{ab}}+\frac{\sqrt{b}}{a+\sqrt{ab}}\right)\)
d) \(\frac{a+b+2\sqrt{ab}}{\sqrt{a}+\sqrt{b}}-\frac{a-b}{\sqrt{a}-\sqrt{b}}\)
e)\(\frac{\sqrt{a}-1}{a\sqrt{a}-a+\sqrt{a}}:\frac{1}{a^2+\sqrt{a}}\)
3. Giải phương trình
a)\(\frac{\sqrt{27x}}{\sqrt{3}}=6\)
b)\(\sqrt{x+1}=3-\sqrt{x}\)
c) \(\sqrt{2x+1}=2+\sqrt{x-3}\)
d) \(\sqrt{x-5}-\frac{x-14}{3+\sqrt{x-5}}=3\)
tìm a để biểu thức có nghĩa:
a) \(\sqrt{\dfrac{-a}{3}}\)
b) \(-\sqrt{\dfrac{1}{a^2}}\)
c) \(\sqrt{\dfrac{\left(1-a\right)^3}{a^2}}\)
d) \(\sqrt{\dfrac{a^{2^{ }}+1}{1-2a}}\)
e) \(\sqrt{a^2-1}\)
f) \(\sqrt{\dfrac{2a-1}{2-a}}\)
Rút gọn phân thức:
a, \(\frac{x^2-5}{x+\sqrt{5}}\) (x ≠ - \(\sqrt{5}\))
b, \(\frac{a\sqrt{a}-1}{\sqrt{a}-1}+\frac{a^2-1}{\sqrt{a}+1}-a\sqrt{a}\)
c, \(\frac{x^2+2\sqrt{2x}+2}{x^2-2}\)
Rút gọn phân thức:
a, \(\frac{x^2-5}{x+\sqrt{5}}\) ( x ≠ - \(\sqrt{5}\) )
b, \(\frac{x^2+2\sqrt{2x}+2}{x^2-2}\)
c, \(\frac{a\sqrt{a}-1}{\sqrt{a}-1}+\frac{a^2-1}{\sqrt{a}+1}-a\sqrt{a}\)
Rút gọn phân thức
a, \(\frac{x^2-5}{x+\sqrt{5}}\) (x ≠ - \(\sqrt{5}\))
b, \(\frac{a\sqrt{a}-1}{\sqrt{a}-1}+\frac{a^2-1}{\sqrt{a}+1}-a\sqrt{a}\)
c, \(\frac{x^2+2\sqrt{2x}+2}{x^2-2}\)
Cho biểu thức\(P=\left(\frac{2a+1}{\sqrt{a^3-1}}-\frac{\sqrt{a}}{a+\sqrt{a}+1}\right).\left(\frac{1+\sqrt{a^3}}{1+\sqrt{a}}-\sqrt{a}\right)\)
a)Rút gọn P
b)Xét dấu \(P.\sqrt{1-a}\)