\(\dfrac{2x-5}{x+5}=3\)
\(\Leftrightarrow2x-5=3\left(x+5\right)\)
\(\Leftrightarrow2x-5=3x+15\)
\(\Leftrightarrow2x-3x=15+5\)
\(\Leftrightarrow-x=20\)
\(\Leftrightarrow x=-20\)
\(\dfrac{x^2-6}{x}=x+\dfrac{3}{x}\)
\(\Leftrightarrow\dfrac{x^2-6}{x}=\dfrac{x^2+3}{x}\)
\(\Rightarrow x^2-6=x^2+3\)
\(\Leftrightarrow x^2-x^2=3+6\)
\(0=9\)(vô lí )
Vậy phương trình vô nghiệm
\(\dfrac{\left(x^2+2x\right)-\left(3x+6\right)}{x-3}=0\)
\(\Leftrightarrow\dfrac{x\left(x+2\right)-3\left(x+2\right)}{x-3}=0\)
\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+2\right)}{x-3}=0\)
\(\Leftrightarrow x+2=0\)
\(\Leftrightarrow x=-2\)
Vậy phương trình có tập nghiệm S =\(\left\{-2\right\}\)
\(\dfrac{5x-2}{3}=\dfrac{5-3x}{2}\)
\(\Leftrightarrow\dfrac{2\left(5x-2\right)}{6}=\dfrac{3\left(5-3x\right)}{6}\)
\(\Leftrightarrow10x-4=15-9x\)
\(\Leftrightarrow10x+9x=15+4\)
\(\Leftrightarrow19x=19\)
\(\Leftrightarrow x=1\)