Bài 5: Giải bài toán bằng cách lập hệ phương trình

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thanh Hân

Bài 14: Một canô xuôi dòng 108 km, rồi ngược dòng 63 km, mất 7 giờ. Lần thứ hai, canô đó xuôi dòng 81 km rồi ngược dòng 84 km cũng mất 7 giờ. Tính vận tốc dòng nước, vận tốc thực của canô.

Hồng Quang
17 tháng 2 2021 lúc 9:48

Vận tốc cano khi xuôi dòng là x+y  (km/h) và vận tốc cano khi ngược dòng là x-y(km/h)

( Trong đó x và y lần lượt là vận tốc cano và vận tốc dòng nước )

Theo đề bài ta có: \(\dfrac{108}{x+y}+\dfrac{63}{x-y}=7\left(1\right)\) (cả xuôi cả về hết 7h)

Tương tự ta cũng có: \(\dfrac{81}{x+y}+\dfrac{84}{x-y}=7\left(2\right)\)

từ (1) và (2) Ta có hệ phương trình: \(\left\{{}\begin{matrix}\dfrac{108}{x+y}+\dfrac{63}{x-y}=7\\\dfrac{81}{x+y}+\dfrac{84}{x-y}=7\end{matrix}\right.\)

Đặt 1/x+y = a và 1/x-y = b

hệ viết lại thành: \(\left\{{}\begin{matrix}108a+63b=7\\81a+84b=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{x+y}=\dfrac{1}{27}\\b=\dfrac{1}{x-y}=\dfrac{1}{21}\end{matrix}\right.\) 

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=27\\x-y=21\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=24\\y=3\end{matrix}\right.\)

Vậy......

Pikachuuuu
17 tháng 2 2021 lúc 10:35

Gọi tốc độ của ca nô khi dòng nước đứng yên là x (km/h) và tốc độ dòng nước là y (km/h).

Khi đó vận tốc của ca nô khi xuôi dòng là x+y(km/h) và tốc độ của ca nô khi ngược dòng là x–y(km/h)

Lần thứ nhất:

Thời gian ca nô xuôi dòng là \(\dfrac{108}{x+y}\left(h\right)\)

Thời gian ca nô ngược dòng là \(\dfrac{63}{x-y}\left(h\right)\)

Vì ca nô xuôi dòng 108 km, rồi ngược dòng 63 km, mất 7 giờ nên ta có phương trình \(\dfrac{108}{x+y}+\dfrac{63}{x-y}=7\) (1)

Lần thứ hai:

Thời gian ca nô xuôi dòng là \(\dfrac{81}{x+y}\)(h)

Thời gian ca nô ngược dòng là \(\dfrac{84}{x-y}\left(h\right)\)

Vì ca nô xuôi dòng 108 km, rồi ngược dòng 63 km, mất 7 giờ nên ta có phương trình \(\dfrac{81}{x+y}+\dfrac{84}{x-y}=7\left(2\right)\)

Từ (1) và (2) ta có hệ phương trình:=> \(\left\{{}\begin{matrix}\dfrac{108}{x+y}+\dfrac{63}{x-y}=7\\\dfrac{81}{x+y}+\dfrac{84}{x-y}=7\end{matrix}\right.\)

Đặt \(a=\dfrac{1}{x+y};b=\dfrac{1}{x-y}\) \(\left(x,y\ne0\right)\)

Ta có: \(\left\{{}\begin{matrix}108a+63b=7\\81a+84b=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}324a+189b=21\\324a+336b=28\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-147b=-7\\81a+84b=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{1}{21}\\81a+84.\dfrac{1}{21}=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{1}{21}\\81a+4=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{1}{21}\\81a=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{1}{21}\\a=\dfrac{1}{27}\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\dfrac{1}{x+y}=\dfrac{1}{27}\\\dfrac{1}{x-y}=\dfrac{1}{21}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=27\\x-y=21\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=27-y\\27-y-y=21\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=27-y\\27-2y=21\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=27-y\\2y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=24\\y=3\end{matrix}\right.\)

Vậy tốc độ của ca nô khi dòng nước đứng yên là 24km/h và tốc độ của dòng nước là 3km/h.