Bài 1: Tính
A=\(\sqrt{5-2\text{√}6}+\sqrt{5+2\text{√}6}\)
B= \(\left(\sqrt{10}+\sqrt{6}\right)\sqrt{8-2\text{√}15}\)
C=\(\sqrt{4+\text{√}7}+\sqrt{4-\text{√}7}\)
D=\(\left(3+\text{√}5\right)\left(\text{√}10-\text{√}2\right)\sqrt{3-\text{√}5}\)
Bài 2: Phân tích thành nhân tử
a, ab+ba+√a+1; a>=0
b, x-2\(\sqrt{xy}\)+y \(\left(x\ge0;y\ge0\right)\)
c, \(\sqrt{xy}+2\text{√}x-3\text{√}y-6\)\(\left(x\ge0;y\ge0\right)\)
Bài 3: Rút gọn
M= \(\left(\frac{1}{\text{√}x-1}-\frac{1}{\text{√}x}\right)\div\left(\frac{\text{√}x+1}{\text{√}x-2}-\frac{\text{√}x+2}{\text{√}x-1}\right)\)
a, Rút gọn M
b, Tính giá trị của M khi x=2
c, Tìm x để M>0
Bài 1:
\(A=\sqrt{5-2\sqrt{6}}+\sqrt{5+2\sqrt{6}}=\sqrt{2+3-2\sqrt{2.3}}+\sqrt{2+3+2\sqrt{2.3}}\)
\(=\sqrt{(\sqrt{2}-\sqrt{3})^2}+\sqrt{\sqrt{2}+\sqrt{3})^2}\)
\(=|\sqrt{2}-\sqrt{3}|+|\sqrt{2}+\sqrt{3}|=\sqrt{3}-\sqrt{2}+\sqrt{2}+\sqrt{3}=2\sqrt{3}\)
\(B=(\sqrt{10}+\sqrt{6})\sqrt{8-2\sqrt{15}}\)
\(=(\sqrt{10}+\sqrt{6}).\sqrt{3+5-2\sqrt{3.5}}\)
\(=(\sqrt{10}+\sqrt{6})\sqrt{(\sqrt{5}-\sqrt{3})^2}\)
\(=\sqrt{2}(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})=\sqrt{2}(5-3)=2\sqrt{2}\)
\(C=\sqrt{4+\sqrt{7}}+\sqrt{4-\sqrt{7}}\)
\(C^2=8+2\sqrt{(4+\sqrt{7})(4-\sqrt{7})}=8+2\sqrt{4^2-7}=8+2.3=14\)
\(\Rightarrow C=\sqrt{14}\)
\(D=(3+\sqrt{5})(\sqrt{5}-1).\sqrt{2}\sqrt{3-\sqrt{5}}\)
\(=(3+\sqrt{5})(\sqrt{5}-1).\sqrt{6-2\sqrt{5}}\)
\(=(3+\sqrt{5})(\sqrt{5}-1).\sqrt{5+1-2\sqrt{5.1}}\)
\(=(3+\sqrt{5})(\sqrt{5}-1).\sqrt{(\sqrt{5}-1)^2}\)
\(=(3+\sqrt{5})(\sqrt{5}-1)^2=(3+\sqrt{5})(6-2\sqrt{5})=2(3+\sqrt{5})(3-\sqrt{5})=2(3^2-5)=8\)
Bài 2:
a) Bạn xem lại đề.
b) \(x-2\sqrt{xy}+y=(\sqrt{x})^2-2\sqrt{x}.\sqrt{y}+(\sqrt{y})^2=(\sqrt{x}-\sqrt{y})^2\)
c)
\(\sqrt{xy}+2\sqrt{x}-3\sqrt{y}-6=(\sqrt{x}.\sqrt{y}+2\sqrt{x})-(3\sqrt{y}+6)\)
\(=\sqrt{x}(\sqrt{y}+2)-3(\sqrt{y}+2)=(\sqrt{x}-3)(\sqrt{y}+2)\)
Bài 3:
a) ĐKXĐ:\(x>0; x\neq 1; x\neq 4\)
\(M=\frac{\sqrt{x}-(\sqrt{x}-1)}{(\sqrt{x}-1)\sqrt{x}}:\frac{(\sqrt{x}+1)(\sqrt{x}-1)-(\sqrt{x}+2)(\sqrt{x}-2)}{(\sqrt{x}-2)(\sqrt{x}-1)}\)
\(=\frac{1}{\sqrt{x}(\sqrt{x}-1)}:\frac{(x-1)-(x-4)}{(\sqrt{x}-2)(\sqrt{x}-1)}=\frac{1}{\sqrt{x}(\sqrt{x}-1)}:\frac{3}{(\sqrt{x}-2)(\sqrt{x}-1)}\)
\(\frac{1}{\sqrt{x}(\sqrt{x}-1)}.\frac{(\sqrt{x}-2)(\sqrt{x}-1)}{3}=\frac{\sqrt{x}-2}{3\sqrt{x}}\)
b)
Khi $x=2$ \(M=\frac{\sqrt{2}-2}{3\sqrt{2}}=\frac{1-\sqrt{2}}{3}\)
c)
Để \(M>0\leftrightarrow \frac{\sqrt{x}-2}{3\sqrt{x}}>0\leftrightarrow \sqrt{x}-2>0\leftrightarrow x>4\)
Kết hợp với ĐKXĐ suy ra $x>4$