a) 2 + 4 + 6 + 8 + ... + ( 2x ) = 210
Số lượng số hạng của tổng trên là :
[ ( 2x ) - 2 ] : 2 + 1 ( số hạng )
Giá trị x đó là :
{ [ ( 2x ) + 2 ] x [ ( 2x ) - 2 ] : 2 + 1 } : 2 = 210
=> [ ( 2x ) + 2 ] x [ ( 2x ) - 2 ] : 2 + 1 = 210 x 2
=> [ ( 2x ) + 2 ] x [ ( 2x ) - 2 ] : 2 + 1 = 420
=> [ ( 2x ) + 2 ] x [ ( 2x ) - 2 ] : 2 = 420 - 1
=> [ ( 2x ) + 2 ] x [ ( 2x ) - 2 ] : 2 = 419
=> ( 2x ) + 2 ] x [ ( 2x ) - 2 ]= 419 x 2
=> ( 2x ) + 2 ] x [ ( 2x ) - 2 = 838
=> [( 2x ) + 2] x ( 2x ) = 838 +2
=> [( 2x ) + 2 ] x ( 2x ) = 840
=> 30 x 28 = 840
=> 2x = 28
=> x = 28 : 2
=> x = 14
Vậy x = 14
b) x + ( x + 1 ) + ( x + 2 ) + ... + ( x + 3 ) = 1 240
=> x + x + 1 + x + 2 + ... + x + 30 = 1 240
=> ( x + x + x + ... + x ) + ( 1 + 2 + ...+ 30 ) = 1 240
=> 31x + 465 = 1 240
=> 31x = 1 240 - 465
=> 31x = 775
=> x = 775 : 31
=> x = 25
Vậy x = 25
a.
2 + 4 + 6 + 8 + .... + (2x) = 210
\(\frac{\left(2x+2\right)\times\left(\frac{2x-2}{2}+1\right)}{2}=210\)
\(\frac{2\times\left(x+1\right)\times\left(\frac{2\times\left(x-1\right)}{2}+1\right)}{2}=210\)
\(\left(x+1\right)\times\left(x-1+1\right)=210\)
\(x\times\left[\left(x-1\right)+1\right]=210\)
\(x\times\left(x+1\right)=14\times15\)
\(x=14\)
x + ( x + 1 ) + ( x +2 ) + .... + ( x + 30 ) = 1240
(x + x + x + ... + x + x) + (1 + 2 + 3 + ... + 29 + 30) = 1240
\(31x+\frac{\left(30+1\right)\times\left(30-1+1\right)}{2}=1240\)
\(31x+\frac{31\times30}{2}=1240\)
\(31x+465=1240\)
\(31x=1240-465\)
\(31x=775\)
\(x=\frac{775}{31}\)
\(x=25\)