\(x+(x+1)+(x+2)+(x+3)+....+(x+30)=1240\)
\(=x+\left(30x+1+2+3+...+30\right)=1240\)
\(=31x+1+2+3+...+30\)(có 30 số hạng) \(=1240\)
\(=31x+\left(30+1\right).30\div2=1240\)
\(=31x+465=1240\)
\(\Rightarrow31x=1240-465\)
\(\Rightarrow31x=775\)
\(\Rightarrow x=775\div31\)
\(\Rightarrow x=25\)