bài 1)
ta có đường thẳng : \(\Delta_1:mx+y+8=0\)\(\Leftrightarrow\) với đường thẳng \(\Delta_1:y=-mx-8\)
và đường thẳng : \(\Delta_2:x-y+m=0\)\(\Leftrightarrow\) với đường thẳng \(\Delta_1:y=x+m\)
ta lại có : 2 đường thẳng \(\Delta_1\) và \(\Delta_2\) vuông góc với nhau khi và chỉ khi tích hệ số góc của chúng bằng \(-1\)
\(\Leftrightarrow-m.1=-1\Leftrightarrow m=1\) vậy \(m=1\)
bài 2)
ta có : \(\left\{{}\begin{matrix}\Delta_1:2x+y-4=0\Leftrightarrow\Delta_1:y=-2x+4\\\Delta_2:5x-2y+3=0\Leftrightarrow\Delta_2:y=\dfrac{5}{2}x+\dfrac{3}{2}\\\Delta_3:mx+3y-2=0\Leftrightarrow\Delta_3:y=\dfrac{-m}{3}x+\dfrac{2}{3}\end{matrix}\right.\)
ta có : \(-2x+4=\dfrac{5}{2}x+\dfrac{3}{2}\Leftrightarrow\dfrac{5}{2}x+2x=4-\dfrac{3}{2}\)
\(\Leftrightarrow\dfrac{9}{2}x=\dfrac{5}{2}\Leftrightarrow x=\dfrac{5}{2}:\dfrac{9}{2}=\dfrac{5}{9}\)
khi \(x=\dfrac{5}{9}\Rightarrow y=-2x+4=-2.\dfrac{5}{9}+4=\dfrac{26}{9}\)
\(\Rightarrow\) 2 đường thẳng \(\Delta_1\) và \(\Delta_2\) cắt nhau tại điểm có tạo độ là \(\left(\dfrac{5}{9};\dfrac{26}{9}\right)\)
thế \(x=\dfrac{5}{9};y=\dfrac{26}{9}\) và đường thẳng \(\Delta_3\)
ta có : \(\) \(\dfrac{26}{9}=\dfrac{-m}{3}.\dfrac{5}{9}+\dfrac{2}{3}\Leftrightarrow\dfrac{26}{9}=\dfrac{-5m}{27}+\dfrac{2}{3}\)
\(\Leftrightarrow\dfrac{-5m}{27}=\dfrac{26}{9}-\dfrac{2}{3}=\dfrac{20}{9}\Leftrightarrow\left(-5m\right).9=27.20\)
\(\Leftrightarrow-45m=540\Leftrightarrow m=\dfrac{540}{-45}=-12\) vậy \(m=-12\)