§1. Phương trình đường thẳng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Diem Quynh

bài 1: cho △ABC có phương trình 3 cạnh AB: 2x-3y-1=0 ; BC: x+3y+7=0 ; CA= 5x-2y+1=0. Viết phương trình đường cao AH

bài2: tìm điểm M trên đường thẳng d :x-y+2=0 cách đều 2 điểm E (0;4) và F(4;-9)

Akai Haruma
20 tháng 1 2018 lúc 14:44

Bài 1:

Ta viết lại phương trình đường thẳng BC:

\(x+3y+7=0\Leftrightarrow y=\frac{-1}{3}x-\frac{7}{3}\)

Gọi PT đường thẳng $AH$ là: \(y=ax+b\)

Vì \(AH\perp BC\Rightarrow a.\frac{-1}{3}=-1\) \(\Leftrightarrow a=3\)

\(\Rightarrow AH: y=3x+b\) (1)

Giao điểm của $AC$ với $AB$ chính là $A$. Do đó tọa độ điểm $A$ thỏa mãn: \(\left\{\begin{matrix} 2x-3y-1=0\\ 5x-2y+1=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=\frac{-5}{11}\\ y=\frac{-7}{11}\end{matrix}\right.\) (2)

Từ (1); (2):\(\Rightarrow \frac{-7}{11}=3.\frac{-5}{11}+b\Leftrightarrow b=\frac{8}{11}\)

Do đó PT đường thẳng AH là:

\(y=3x+\frac{8}{11}\)\(\Leftrightarrow 3x-y+\frac{8}{11}=0\)

 

 

 

 

 

 

Akai Haruma
20 tháng 1 2018 lúc 14:53

Bài 2:

Gọi tọa độ của điểm M là \((a,b)\)

\(M\in (d)\Rightarrow a-b+2=0(1)\)

M cách đều hai điểm E. F

\(\Leftrightarrow ME=MF\)

\(\Leftrightarrow ME^2=MF^2\Leftrightarrow (a-0)^2+(b-4)^2=(a-4)^2+(b+9)^2\)

\(\Leftrightarrow 81-8a+26b=0\) (2)

Từ (1); (2) suy ra \(\left\{\begin{matrix} a=\frac{-133}{18}\\ b=\frac{-97}{18}\end{matrix}\right.\)

Vậy tọa độ điểm \(M=(\frac{-133}{18}; \frac{-97}{18})\)


Các câu hỏi tương tự
Phạm Bích liễu Huỳnh
Xem chi tiết
nắng Mộtmàu_
Xem chi tiết
Phạm bảo an
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Thuỳy Nga
Xem chi tiết
tu thi dung
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Phạm Hồng Vân
Xem chi tiết
An Hồ Hoàng
Xem chi tiết