Bài 1: Rút gọn các biểu thức sau:
a, A = (x-2).(2x-1) - 2x (x+3)
b, B = (3x-2).(2x+1) - (6x-1).(x+2)
c, C = 6x.(2x+3) - (4x-1).(3x-2)
d, D = (2x+3).(5x-2)+(x+4).(2x-1) - 6x.(2x-3)
Bài 2: Chứng tỏ rằng các đa thức không phụ thuộc vào biến.
a, 2x(3x-5).(x+11) - 3x.(2x+3).(x+7)
b, (x2+5x-6).(x-1) - (x+2).(x2-x+1) - x(3x-10)
c, (x2+x+1).(x-1) - x2(x+1) + x2 - 5
Bài 1
A= (x-2)(2x-1)-2x(x+3)=2x2-x-4x+2-2x2-6x=-11x+2
Bài 1:
a) \(A=\left(x-2\right)\left(2x-1\right)-2x\left(x+3\right)\)
\(A=2x^2-x-4x+2-2x^2-6x\)
\(A=-11x+2\)
b) \(B=\left(3x-2\right)\left(2x+1\right)-\left(6x-1\right)\left(x+2\right)\)
\(B=6x^2+3x-4x-2-6x^2-12x+x+2\)
\(B=-12x\)
c) \(C=6x\left(2x+3\right)-\left(4x-1\right)\left(3x-2\right)\)
\(C=12x^2+18x-12x^2+8x+3x-2\)
\(C=29x-2\)
d) \(D=\left(2x+3\right)\left(5x-2\right)+\left(x+4\right)\left(2x-1\right)-6x\left(2x-3\right)\)
\(D=10x^2-4x+15x-6+2x^2-x+8x-4-12x^2+18x\)
\(D=36x-10\)
Bài 2:
a: Ta có: \(2x\left(3x-5\right)\left(x+11\right)-3x\left(2x+3\right)\left(x+7\right)\)
\(=2x\left(3x^2+33x-5x-55\right)-3x\left(2x^2+14x+3x+21\right)\)
\(=6x^3+56x^2-110x-6x^2-51x^2-63x\)
\(=-117x\)
b: Ta có: \(\left(x^2+5x-6\right)\left(x-1\right)-\left(x+2\right)\left(x^2-x+1\right)-x\left(3x-10\right)\)
\(=x^3+4x^2-11x+6-\left(x^3-x^2+x+2x^2-2x+2\right)-3x^2+10x\)
\(=x^3+x^2-x+6-x^3-x^2+x-2\)
=4
c: Ta có: \(\left(x^2+x+1\right)\left(x-1\right)-x^2\left(x+1\right)+x^2-5\)
\(=x^3-1-x^3-x^2+x^2-5\)
=-6
Bài 1:
a: Ta có: \(A=\left(x-2\right)\left(2x-1\right)-2x\left(x+3\right)\)
\(=2x^2-x-4x+2-2x^2-6x\)
\(=-11x+2\)
b: Ta có: \(B=\left(3x-2\right)\left(2x+1\right)-\left(6x-1\right)\left(x+2\right)\)
\(=6x^2+3x-4x-2-6x^2-12x+x+2\)
\(=0\)
c: Ta có: \(C=6x\left(2x+3\right)-\left(4x-1\right)\left(3x-2\right)\)
\(=12x^2+18x-12x^2+8x+3x-2\)
\(=29x-2\)
d: Ta có: \(D=\left(2x+3\right)\left(5x-2\right)+\left(x+4\right)\left(2x-1\right)-6x\left(2x-3\right)\)
\(=10x^2-4x+15x-6+2x^2-x+8x-4-12x^2+18x\)
\(=36x-10\)