Bài 1: Giải phương trình:
\(\left(x^2-3\right)^2+2\left(x^2-3\right)-3=0\)
Đặt: \(x^2-3=t\)
\(\Leftrightarrow t^2+2t-3=0\)
\(\Leftrightarrow t^2-t+3t-3=0\)
\(\Leftrightarrow t\left(t-1\right)+3\left(t-1\right)=0\)
\(\Leftrightarrow\left(t-1\right)\left(t+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t-1=0\\t+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=1\\t=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2-3=1\\x^2-3=-3\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x^2=4\\x^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x=\sqrt{4}\\x=-\sqrt{4}\end{matrix}\right.\\x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\\x=0\end{matrix}\right.\)
Vậy: Nghiệm của phương trình là: \(S=\left\{-2;0;2\right\}\)
_Chúc bạn học tốt_
bài 2: giải phương trình có chứa dấu giá trị tuyệt đối:
nếu x<1 thì \(\left|x-1\right|=1-x\) và \(\left|x-3\right|=3-x\) (1)
nếu \(1\le x< 3\) thì \(\left|x-1\right|=x-1\) và \(\left|x-3\right|=3-x\) (2)
nếu \(x\ge3\) thì \(\left|x-1\right|=x-1\) và \(\left|x-3\right|=x-3\) (3)
từ (1), (2) và (3), suy ra:
\(\left[{}\begin{matrix}1-x+3-x=2\\x-1+3-x=2\\x-1+x-3=2\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=1\\1\le x< 3\\x=3\end{matrix}\right.\)
vậy phương trình có tập nghiệm là \(S=\left\{x|1\le x\le3\right\}\)