a) Ta có: \(\frac{x-17}{33}+\frac{x-21}{29}+\frac{x}{25}=4\)
\(\Leftrightarrow\frac{x-17}{33}-1+\frac{x-21}{29}-1+\frac{x}{25}-2=0\)
\(\Leftrightarrow\frac{x-17-33}{33}+\frac{x-21-29}{29}+\frac{x-2\cdot25}{25}=0\)
\(\Leftrightarrow\frac{x-50}{33}+\frac{x-50}{29}+\frac{x-50}{25}=0\)
\(\Leftrightarrow\left(x-50\right)\left(\frac{1}{33}+\frac{1}{29}+\frac{1}{25}\right)=0\)
Vì \(\frac{1}{33}+\frac{1}{29}+\frac{1}{25}>0\)
nên x-50=0
hay x=50
Vậy: x=50
b) Ta có: \(\left(3x-5\right)\left(7-5x\right)+\left(5x+2\right)\left(3x-2\right)=2\)
\(\Leftrightarrow-15x^2+46x-35+15x^2-4x-4-2=0\)
\(\Leftrightarrow42x-41=0\)
\(\Leftrightarrow42x=41\)
hay \(x=\frac{41}{42}\)
a, \(\frac{x-17}{33}+\frac{x-21}{29}+\frac{x}{25}=4\)
\(\Leftrightarrow\left(\frac{x-17}{33}-1\right)+\left(\frac{x-21}{29}-1\right)+\left(\frac{x}{25}-2\right)=4-4\)
\(\Leftrightarrow\left(\frac{x-17-33}{33}\right)+\left(\frac{x-21-29}{29}\right)+\left(\frac{x-2.25}{25}\right)=0\)
\(\Leftrightarrow\frac{x-50}{33}+\frac{x-50}{29}+\frac{x-50}{25}=0\)
\(\Leftrightarrow\left(x-50\right)\left(\frac{1}{33}+\frac{1}{29}+\frac{1}{25}\right)=0\) (*)
Vì \(\frac{1}{33}+\frac{1}{29}+\frac{1}{25}>0\Rightarrow\) Phương trình (*) xảy ra khi: \(x-50=0\Leftrightarrow x=50\)
Vậy phương trình có nghiệm duy nhất là x = 50.