Cho biểu thức \(A=\left(\dfrac{x^2+y^2}{x^2y^2}-\dfrac{1}{z^2}\right)\left(\dfrac{y^2+z^2}{y^2z^2}-\dfrac{1}{x^2}\right)\left(\dfrac{z^2+x^2}{z^2x^2}-\dfrac{1}{y^2}\right)\)
Trong đó \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\) .Chứng minh A luôn có giá trị âm với mọi x,y,z#0
cho x,y,z là 3 số thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\) . chứng minh rằng \(\dfrac{1}{x^4}+\dfrac{1}{y^4}+\dfrac{1}{z^4}\ge\dfrac{1}{xyz}\)
Cho \(\dfrac{x}{a}\) + \(\dfrac{y}{b}\) + \(\dfrac{z}{c}\) = 1 và \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\)
Tính A = \(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\)
các biểu thức x+y+z và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\)
có thể cùng có giá trị bằng 0 được hay không
Cho \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=0\) và \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=2\)
Tính \(A=\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\)
1.Thực hiện phép tính:
a) ( \(\dfrac{1}{1-x}\)- 1)( x - \(\dfrac{1-2x}{1-x}\) + 1)
b) ( \(\dfrac{1}{x}\)+ \(\dfrac{x-2}{x^2-4}\) - \(\dfrac{2+x}{x^2+2x}\))
c) ( \(\dfrac{2+x}{2-x}\) - \(\dfrac{4x^2}{x^2-4}\) - \(\dfrac{2-x}{2+x}\)): \(\dfrac{x^2-3x}{2x^2-x^3}\)
d) [ \(\dfrac{1}{x^2}\) + \(\dfrac{1}{y^2}\) + \(\dfrac{2}{x+y}\)( \(\dfrac{1}{x}\) + \(\dfrac{1}{y}\))] : \(\dfrac{x^3+y^3}{x^2y^2}\)
Tính:
\(\dfrac{x\left(y^2-z\right)+y\left(x-xy\right)}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\) . \(\dfrac{2\left(x^3+y^3+z^3-3xyz\right)}{xy^2-xz\left(2y-z\right)}\)
Giúp mình với!!! Mình cần gấp nha!!!
Thực hiện phép tính sau bằng 2 cách: dùng tính chất phân phối của phép nhân với phép cộng và không dùng tính chất này
a). \(\dfrac{x^3-1}{x+2}\left(\dfrac{1}{x-1}-\dfrac{x+1}{x^2+x+1}\right)\)
b). \(\dfrac{x^3+2x^2-x-2}{2x+10}\left(\dfrac{1}{x-1}-\dfrac{2}{x+1}+\dfrac{1}{x+2}\right)\)
Thực hiện các phép tính sau bằng hai cách : dùng tính chất phân phối của phép nhân đối với phép cộng và không dùng tính chất này :
a) \(\dfrac{x^3-1}{x+2}.\left(\dfrac{1}{x-1}-\dfrac{x+1}{x^2+x+1}\right)\)
b) \(\dfrac{x^3+2x^2-x-2}{2x+10}\left(\dfrac{1}{x-1}-\dfrac{2}{x+1}+\dfrac{1}{x+2}\right)\)