\(P=\frac{2\left(a+b\right)}{\sqrt{4a\left(3a+b\right)}+\sqrt{4b\left(3b+a\right)}}\ge\frac{2\left(a+b\right)}{\frac{4a+3a+b}{2}+\frac{4b+3b+a}{2}}=\frac{4\left(a+b\right)}{8\left(a+b\right)}=\frac{1}{2}\)
Dấu "=" xảy ra khi và chỉ khi \(a=b\)
\(P=\frac{2\left(a+b\right)}{\sqrt{4a\left(3a+b\right)}+\sqrt{4b\left(3b+a\right)}}\ge\frac{2\left(a+b\right)}{\frac{4a+3a+b}{2}+\frac{4b+3b+a}{2}}=\frac{4\left(a+b\right)}{8\left(a+b\right)}=\frac{1}{2}\)
Dấu "=" xảy ra khi và chỉ khi \(a=b\)
cho biểu thức M=\(\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right)\frac{x^2-2x+1}{2}\)
a) Rút gọn M.
b) Chứng minh rằng nếu 0 < x < 1 thì M > 0.
P=\(\left(\frac{2\sqrt{x}+x}{x\sqrt{x}-1}-\frac{1}{\sqrt{x}-1}\right):\left(1-\frac{\sqrt{x}+2}{x+\sqrt{x}+1}\right)\)
a/ Rút gọn P
b/Tính √P khi x= 5+2√3
Cho 3 số thực a,b,c dương . CMR :
\(\sqrt{\dfrac{a^3}{a^3+\left(b+c\right)^3}}+\sqrt{\dfrac{b^3}{b^3+\left(c+a\right)^3}}+\sqrt{\dfrac{c^3}{c^3+\left(a+b\right)^3}}\)
giải pt:
a. \(\left(x+4\right)\left(x+1\right)-3\sqrt{x^2+5x+2}=6\)
b, \(\left(x-3\right)\left(x+1\right)+4\left(x-3\right)\sqrt{\frac{x+1}{x-3}}=-3\)
A= \(\left(\frac{x-\sqrt{x}+2}{x-1}-\frac{1}{\sqrt{x}-1}\right).\frac{x+2\sqrt{x}}{2x-2\sqrt{x}}\)
(Với x≠1; x>0)
a) Rút gọn A
b) Chứng minh A>\(\frac{1}{2}\) với x>0; x≠1
Giúp tui nha
a) Tìm 2 số a và b sao cho \(7a+4b=-4\) và đường thẳng \(ax+by=-1\) di qua điểm A(-2;-1)
b) Tìm a để 2 đường thẳng \(y=\left(2-a\right)x+1\) và \(y=\left(1+2a\right)x+2\) song song với nhau
c) Cho 3 số dương a b c có tổng bằng 1. Chứng minh: \(\frac{9}{a}+\frac{9}{b}+\frac{9}{c}\ge81\)
Cho B=\(\left(\dfrac{a-b}{\sqrt{a^2-b^2}-a+b}+\dfrac{\sqrt{a-b}}{\sqrt{a+b}+\sqrt{a-b}}\right)\cdot\dfrac{a^2+3b^2}{\sqrt{a^2-b^2}}\)
a) Tìm ĐKXĐ và rút gọn B
b) Cho a-b=1. Tìm min B
3) phân tích đa thức P (x) = (3x-2)3 + ( 1-2x )3 + ( 1-x )3 thành nhân tử
4) cho abc là 3 số thực thỏa mãn đk a+b+c+\(\sqrt{abc}\) = 4. tính giá trị biểu thức :
A = \(\sqrt{a\left(4-b\right)\left(4-c\right)}\) + \(\sqrt{b\left(4-c\right)\left(4-a\right)}\)+ \(\sqrt{c\left(4-a\right)\left(4-b\right)}-\sqrt{abc}\)
1. Giải hệ phương trình sau:
\(\left\{{}\begin{matrix}\left(a+b\right)^2=10+2ab\\\left(a+b\right)\left(a-\dfrac{2}{ab}\right)=\dfrac{4}{3}\end{matrix}\right.\)
2.Giải phương trình:
\(\sqrt{\sqrt{2}-1-x}+\sqrt[4]{x}=\dfrac{1}{\sqrt[4]{2}}\)