mạng có đó tương tự như z mà làm theo !!
mạng có đó tương tự như z mà làm theo !!
Cho biểu thức :
A = \(\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x-3}{\sqrt{x-9}}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-\dfrac{1}{1}\right)\)
a) Rút gọn
b) Tính A khi x = \(4-2\sqrt{3}\)
c) Tìm x để A < -1/2
d) Tìm Min của A
Giải các hệ phương trình sau:
a) \( \left\{{}\begin{matrix}x\sqrt{5}-\left(1+\sqrt{3}\right)y=1\\\left(1-\sqrt{3}\right)x+y\sqrt{5}=1\end{matrix}\right.;\)
b) \(\left\{{}\begin{matrix}\dfrac{2x}{x+1}+\dfrac{y}{y+1}=\sqrt{2}\\\dfrac{x}{x+1}+\dfrac{3y}{y+1}=-1\end{matrix}\right..\)
3) phân tích đa thức P (x) = (3x-2)3 + ( 1-2x )3 + ( 1-x )3 thành nhân tử
4) cho abc là 3 số thực thỏa mãn đk a+b+c+\(\sqrt{abc}\) = 4. tính giá trị biểu thức :
A = \(\sqrt{a\left(4-b\right)\left(4-c\right)}\) + \(\sqrt{b\left(4-c\right)\left(4-a\right)}\)+ \(\sqrt{c\left(4-a\right)\left(4-b\right)}-\sqrt{abc}\)
Cho biểu thức P=\(\left(\dfrac{x-6}{x+3\sqrt{x}}-\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\dfrac{2\sqrt{x}-6}{x+1}\)
a Rút gọn biểu thức P
b Tìm các giá trị của x để P=1
1. Giải hệ phương trình sau:
\(\left\{{}\begin{matrix}\left(a+b\right)^2=10+2ab\\\left(a+b\right)\left(a-\dfrac{2}{ab}\right)=\dfrac{4}{3}\end{matrix}\right.\)
2.Giải phương trình:
\(\sqrt{\sqrt{2}-1-x}+\sqrt[4]{x}=\dfrac{1}{\sqrt[4]{2}}\)
Giari phương trình sau :a /\(\dfrac{5-2\sqrt{5}}{\sqrt{5}}+\dfrac{20}{5+\sqrt{5}}\)
b/\(\dfrac{3+2\sqrt{3}}{\sqrt{3}}+\dfrac{2+\sqrt{2}}{\sqrt{2}}-\left(\sqrt{3}+\sqrt{2}\right)\)
Giải các hệ phương trình sau :
a) \(\left\{{}\begin{matrix}\sqrt{3}x-2\sqrt{2}y=7\\\sqrt{2}x+3\sqrt{3}y=-2\sqrt{6}\end{matrix}\right.\);
b) \(\left\{{}\begin{matrix}\left(\sqrt{2}+1\right)x-\left(2-\sqrt{3}\right)y=2\\\left(2+\sqrt{3}\right)x+\left(\sqrt{2}-1\right)y=2\end{matrix}\right.\).
giải phương trình:
a, \(\sqrt{4x^2+5x+1}-2\sqrt{x^2-x+1}=9x-3\)
b, \(\sqrt{4x+1}-\sqrt{3x-2}=\dfrac{x+3}{5}\)
c, \(x^2+3x+5=\left(x+3\right).\sqrt{x^2+5}\)
d, \(\sqrt{x^4+x^2+1}+\left(x^2+1\right).\sqrt{3}=3x\sqrt{3}\)
Giai he phuong trinh:
a) \(\left\{{}\begin{matrix}5x+3y=31\\\sqrt{\dfrac{x+2}{y-3}}+\sqrt{\dfrac{y-3}{x+2}}=2\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\dfrac{x}{y}-\dfrac{x}{y+12}=1\\\dfrac{x}{y-12}-\dfrac{x}{y}=2\end{matrix}\right.\)