Bài 1: Căn bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Bảo Bảo

Bài 1: Cho x,y,z >0 thỏa mãn:

xy+yz+xz \(\ge\)2xyz

Tìm Max A= (x-1)(y-1)(z-1)

Bài 2: Cho a,b,c >0 thỏa mãn:

\(\dfrac{c+1}{c+3}\ge\dfrac{1}{a+2}+\dfrac{3}{b+4}\)

Tìm Min M= (a+1)(b+1)(c+1)

TFBoys
31 tháng 7 2017 lúc 21:03

1. Vì x, y, z > 0

\(xy+yz+zx\ge2xyz\)

\(\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge2\)

Suy ra:

\(\dfrac{1}{x}\ge1-\dfrac{1}{y}+1-\dfrac{1}{z}=\dfrac{y-1}{y}+\dfrac{z-1}{z}\ge2\sqrt{\dfrac{\left(y-1\right)\left(z-1\right)}{yz}}\). (1)

Tương tự \(\dfrac{1}{y}\ge2\sqrt{\dfrac{\left(z-1\right)\left(x-1\right)}{zx}}\) (2)

\(\dfrac{1}{z}\ge2\sqrt{\dfrac{\left(x-1\right)\left(y-1\right)}{xy}}\) (3)

Nhân (1), (2), (3) với nhau theo vế ta được

\(\dfrac{1}{xyz}\ge\dfrac{8\left(x-1\right)\left(y-1\right)\left(z-1\right)}{xyz}\)

\(\Leftrightarrow\left(x-1\right)\left(y-1\right)\left(z-1\right)\le\dfrac{1}{8}\)

Đẳng thức xảy ra \(\Leftrightarrow x=y=z=\dfrac{3}{2}\)

TFBoys
1 tháng 8 2017 lúc 16:03

\(\dfrac{c+1}{c+3}\ge\dfrac{1}{a+2}+\dfrac{3}{b+4}\)

\(\Leftrightarrow1-\dfrac{2}{c+3}\ge\dfrac{1}{a+2}+\dfrac{3}{b+4}\)

\(\Leftrightarrow1-\dfrac{1}{a+2}\ge\dfrac{3}{b+4}+\dfrac{2}{c+3}\ge2\sqrt{\dfrac{6}{\left(b+4\right)\left(c+3\right)}}\)

Hay \(\dfrac{a+1}{a+2}\ge2\sqrt{\dfrac{6}{\left(b+4\right)\left(c+3\right)}}\) (1)

Tương tự \(\dfrac{b+1}{b+4}\ge2\sqrt{\dfrac{2}{\left(c+3\right)\left(a+2\right)}}\) (2)

\(\dfrac{c+1}{c+3}\ge2\sqrt{\dfrac{3}{\left(a+2\right)\left(b+4\right)}}\) (3)

Nhân (1), (2), (3) vế theo vế

\(\dfrac{\left(a+1\right)\left(b+1\right)\left(c+1\right)}{\left(a+2\right)\left(b+4\right)\left(c+3\right)}\ge8.\dfrac{6}{\left(a+2\right)\left(b+4\right)\left(c+3\right)}\)

\(\Leftrightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge48\)

Đẳng thức xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=5\\c=3\end{matrix}\right.\)


Các câu hỏi tương tự
Thiều Khánh Vi
Xem chi tiết
phan thị minh anh
Xem chi tiết
Vũ Tiền Châu
Xem chi tiết
Phan Minh Chi
Xem chi tiết
Isolde Moria
Xem chi tiết
Nam Nguyễn
Xem chi tiết
Hồ Minh Phi
Xem chi tiết
Nguyễn Ngọc Tâm
Xem chi tiết
Lê Thị Quỳnh Anh
Xem chi tiết