bài 3
cho a,b,c>0. chứng minh rằng
\(\left(1+\dfrac{2a}{b}\right)^2+\left(1+\dfrac{2b}{c}\right)^2+\left(1+\dfrac{2c}{a}\right)^2\ge\dfrac{9\left(a+b+c\right)^2}{ab+bc+ca}\)
E.x 3:
Áp dụng bunyakovsky:
\(VT=\left(1+\dfrac{2a}{b}\right)^2+\left(1+\dfrac{2b}{c}\right)^2+\left(1+\dfrac{2c}{a}\right)^2\ge\dfrac{1}{3}\left(3+\dfrac{2a}{b}+\dfrac{2b}{c}+\dfrac{2c}{a}\right)^2\)
Áp dụng cauchy-schwarz:
\(VT\ge\dfrac{1}{3}\left(3+\dfrac{2\left(a+b+c\right)^2}{ab+bc+ca}\right)\)
Đặt \(\dfrac{\left(a+b+c\right)^2}{ab+bc+ca}=t\) thì \(t\ge3\)
Cần chứng minh \(\dfrac{1}{3}\left(3+2t\right)^2\ge9t\Leftrightarrow\left(t-3\right)\left(4t-3\right)\ge0\)( đúng)
Vậy BĐT được chứng minh .