Bài 1: Cho tam giác ABC.Gọi D là 1 diểm trên đường trung tuyến AM. Qua D vẽ tia xy cắt 2 cạnh AB,AC. Gọi H,I,K lần lượt là hình chiếu của A,B,C trên xy. Xác định vị trí của D để AH=\(\frac{BI+CK}{2}\)
Cho tam giác ABC vuông tại A, đường cao AH (H thuộc BC). Gọi D, E lần lượt là hình chiếu của H trên AB, AC và O, M, N lần lượt là trung điểm của AH, BH, CH.
a) CM: DM song song với EN và BH.AN=BO.AH
b) Gọi I là trực tâm của tam giác AMN. CM: Diện tích tứ giác BMIO gấp 3 lần diện tích tam giác MHI.
c) Giả sử khoảng cách từ điểm A đến cạnh BC không đổi thì tam giác ABC phải thỏa mãn điều kiện gì để diện tích tam giác AMN nhỏ nhất?
Cho tam giác ABC đều, G là trọng tâm của tam giác . Gọi M là 1 điểm bất kỳ thuộc BC, I là trung điểm của AM. Kẻ AH vuông góc với BC. Gọi D và E lần lượt là hình chiếu của MN trên AB và AC
a) Tứ giác DIEH là hình gi? Vì sao?
b) Chứng minh: IH, DE, MG đồng quy
Cho \(\Delta ABC\) có đường trung tuyến AM, đường thẳng d đi qua trung điểm I của AM cắt các cạnh AB và AC. Gọi \(A',B',C'\) lần lượt là hình chiếu của A, B, C trên d. C/minh: \(AA'=\dfrac{BB'+CC'}{2}\)
1.Cho tam giác ABC có đường trung tuyến AM. Điểm D thuộc đoạn thẳng BM, Từ D kẻ tia song song với AM và cắt cạnh AB, và tia CA lần lượt tại E và F. Lấy điểm I trên đoạn thẳng FE sao cho AI// BC, điểm G trên cạnh AC sao cho EG//BC. AM cắt EG tại K. Cm:
a) K là trung điểm của EG.
b) A là trung điểm FG và I là trung điểm FE.
2. Cho hình thang ABCD( đáy AB, CD; AB<CD). Gọi O là giao điểm hai đường chéo . Đường thẳng qua O và song song với 2 đáy cắt AD và BC lần lượt tại I và K. Chứng minh
a) \(\frac{1}{AB}\)+\(\frac{1}{CD}\)=\(\frac{1}{OI}\)
b) \(\frac{1}{AB}\)+\(\frac{1}{CD}\)=\(\frac{2}{KI}\)
Cho tam giác ABC vuông tại A, đường cao AH, phân giác BI. Qua C kẻ đường thẳng vuông góc với BI tại D. Gọi E là giao điểm của AB và CD. Gọi F là hình chiếu của D trên BE. Chứng minh: (BD/DE)^2=BF/EF
Cho tam giác ABC có góc B là góc nhọn. Gọi D là điểm đối xứng của B qua trung điểm của AC. Gọi H, K lần lượt là hình chiếu vuông góc của A trên hai đường thẳng BC, CD. Khi góc B bằng 30 độ. Tính tỉ số diện tích tam giác AHK và diện tích hình bình hành ABCD
Cho tam giác ABC có góc B là góc nhọn. Gọi D là điểm đối xứng của B qua trung điểm của AC. Gọi H, K lần lượt là hình chiếu vuông góc của A trên hai đường thẳng BC, CD. Khi góc B bằng 30 độ. Tính tỉ số diện tích tam giác AHK và diện tích hình bình hành ABCD