1.
\(BC=\sqrt{AB^2+AC^2}=5\)
\(sinB=\frac{AC}{BC}=\frac{4}{5}\) ; \(cosB=\frac{AB}{BC}=\frac{3}{5}\) ; \(tanB=\frac{AC}{AB}=\frac{4}{3}\)
\(sinC=\frac{AB}{BC}=\frac{3}{5}\) ; \(cosC=\frac{AC}{BC}=\frac{4}{5}\) ; \(tanC=\frac{AB}{AC}=\frac{3}{4}\)
2.
\(BC=\sqrt{AB^2+AC^2}=10\) \(\Rightarrow AM=\frac{1}{2}BC=5\)
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{25}{576}\Rightarrow AH=4,8\)
\(HM=\sqrt{AM^2-AH^2}=1,4\)
\(sin\widehat{HAM}=\frac{HM}{AM}=\frac{7}{25}\) ; \(cos\widehat{HAM}=\frac{AH}{AM}=\frac{24}{25}\) ; \(tan\widehat{HAM}=\frac{HM}{AH}=\frac{7}{24}\)