Bài 7: Hình bình hành

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Hồng Vy

Bài 1 : Cho hình bình hành ABCD ( AB > BC ) . Tia phân giác của góc D cắt AB ở E , tia phân giác của góc B cắt CD ở F . a ) Chứng minh DE // BF b ) Tứ giác DEBF là hình gì Bài 2 : Cho hình bình hành ABCD . gọi K , I lần lượt là trung điểm của các cạnh AB , CD . Gọi M , N lần lượt là giao điểm của AI , CK với đường chéo BD . Chứng minh AC , BD , IK đồng quy tại một điểm

Nguyễn Lê Phước Thịnh
22 tháng 10 2023 lúc 21:51

Bài 2:

AK=AB/2

CI=CD/2

mà AB=CD

nên AK=CI

Xét tứ giác AKCI có

AK//CI

AK=CI

Do đó: AKCI là hình bình hành

=>AC cắt KI tại trung điểm của mỗi đường(1)

ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường(2)

Từ (1) và (2) suy ra AC,KI,BD đồng quy

Bài 1:

a: \(\widehat{ADE}=\widehat{EDF}=\dfrac{1}{2}\cdot\widehat{ADC}\)

\(\widehat{ABF}=\widehat{CBF}=\dfrac{1}{2}\cdot\widehat{ABC}\)

mà \(\widehat{ADC}=\widehat{ABC}\)

nên \(\widehat{ADE}=\widehat{EDF}=\widehat{ABF}=\widehat{CBF}\)

Xét ΔEAD và ΔFCB có

\(\widehat{A}=\widehat{C}\)

AD=CB

\(\widehat{EDA}=\widehat{FBC}\)

Do đó: ΔEAD=ΔFCB

=>\(\widehat{AED}=\widehat{CFB}\)

=>\(\widehat{EDF}=\widehat{CFB}\)

mà hai góc này đồng vị

nên DE//BF

b: Xét tứ giác DEBF có

DE//BF

BE//DF

Do đó: DEBF là hình bình hành


Các câu hỏi tương tự
Uy Nguyễn Chấn
Xem chi tiết
jfbdfcjvdshh
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sang Bùi Xuân
Xem chi tiết
Thư Nguyễn Anh
Xem chi tiết
jfbdfcjvdshh
Xem chi tiết
Khánh Mai
Xem chi tiết
ThanhSungWOO
Xem chi tiết
Phạm Phương Linh
Xem chi tiết