Bài 1: cho ΔMAB. Vẽ đường tròn tâm O , đường kính AB cắt MA tại C, cắt MB tại D. Kẻ AP ⊥ CD, PQ⊥CD. Gọi AD giao với BC tại H. Chứng minh:
a) CP=DQ
b) PD. DQ=PA. BQ
c) QC. CP=PD. QD
d) MA⊥AB
Cho tam giác ABC nhọn vẽ đường tròn tâm O đường kính BC cắt AB, AC theo thứ tự tại D và E a) chứng minh CD vuông góc với AB, BE vuông góc với AC b)gọi K là giao điểm BE và CD. chứng minh AK vuông góc với BC
Cho tam giác MAB vuông tại M ( MB<MA), kẻ MH vuông góc với AB( H thuộc AB). Đường tròn tâm O đường kính MH cắt MA và MB lần lượt tại E và F( E,F khác M). a) Chứng minh tứ giác AEFB nội tiếp b) Đường thẳng EF cắt đường tròn tâm (I) ngoại tiếp tam giác MAB tại P và Q(P thuộc cung MB). Chứng minh tam giác MPQ cân c) Gọi D là giao điểm thứ 2 của (O) với (I). Đường thẳng EF cắt đường thẳng AB tại K. Chứng minh ba điểm M,D,K thẳng hàng
Bài 1: Cho ∆ABC nhọn. Đường tròn tâm O đường kính BC cắt cạnh AB và AC tại D và E. Gọi H là giao điểm của CD và BE, I là trung điểm của AH. Chứng minh:
a) CD AB
b) AH BC
c) Bốn điểm A, D, H, E cùng thuộc một đường tròn.
Cho (O; R), đường kính AB. tiếp tuyến tại M của đường tròn tâm o cắt 2 tiếp tuyến tại A và B lần lượt ở C và D. Vẽ (I, CD). Chứng minh AB tiếp xúc với (I) tại O.
cho đường tròn tâm o bán kính R và dây AB khác đường kính, qua O kẻ đường thẳng vuông góc với Ab tại H và đường thẳng này cắt tiếp tuyến tại A của đường tròn tại M
a) C/M MB là tiếp tuyến củ đường tròn tâm O
b) biết R=15cm; Ab=24cm. tính Om
c) kẻ cát tuyến MCD ( C nằm giữa Mvaf D) . gọi I là giao điểm CD, tia OI cắt tiếp tuyến tại C của đường tòn tai điểm K. C/M OI.OK=OM.OM và ba điểm A,B,K thẳng hàng
Cho đường tròn ( O ; R ) có 2 đường kính AB , CD vuông góc nhau . Gọi M là điểm thuộc cung nhỏ AC , MB cắt CD tại E , MD cắt AB tại F. a ) Chứng minh tứ giác OFMC nội tiếp . b ) Tính diện tích hình quạt tròn OAC theo R. c ) Chứng minh BE.BM=2R2. d ) AC cắt MD tại G. Chứng minh GE//AB .