biết cos a=\(\dfrac{20}{29}\). tính sin a, tan a, cot a
:((
Cho tam giác ABC có 3 góc nhọn AD , BE , CF là đường cao .C/m
a) AD . BE . CF = AB . BC . CA . Sin A . Sin B . Sin C = AB . BC . CA . Cos góc CAD . Cos ABE . Cos BCF
b) Tính \(\dfrac{^{^SAEF}}{^{SABC}}=^{^{ }Cot^2A}\)
c) \(\dfrac{^{SADF}}{SABC}=1-Cót^{2
}A-Cot^2B-Cot^2C\)
d) Gọi M là trung điểm BC , giả sử góc BAC = 60 độ , CMR : tam giác MFC đều
Cho \(\dfrac{\sin^4\alpha}{a}+\dfrac{\cos^4\alpha}{b}=\dfrac{1}{a+b}\).CM:\(\dfrac{\sin^8\alpha}{a^3}+\dfrac{cos^8\beta}{b^3}=\dfrac{1}{\left(a+b\right)^3}\)
Khong dùng máy tính cầm tay, hãy tính:
a) A = \(\dfrac{\sin33}{\cos57}+\dfrac{\tan32}{\cot58}-2\left(\sin20\cdot\cos70+\cos20\cdot\sin70\right)\)
b) B = \(\dfrac{\sin^215+\sin^275-\sin^212-\sin^218}{\cos^213+\cos^277+\cos^21+\cos^289}+\dfrac{2\cdot\tan55}{\cot35}\)
cho tan\(\alpha\)=3/4. tinh
A=\(\dfrac{sin^3\alpha+cos^3\alpha}{2\sin\alpha\times\cos^2\alpha+\cos\alpha\times\sin^2\alpha}\)
Cho tan \(\alpha \) = \(\dfrac{1}{2}\) . Tính A = \(\dfrac{sin\alpha+cos\alpha}{cos\alpha-sin\alpha}\)
Chứng minh các công thức sau :
\(Tan\alpha=\dfrac{sin\alpha}{cos\alpha}\)
\(Cot\alpha=\dfrac{cos\alpha}{sin\alpha}\)
\(sin^2\alpha+cos^2\alpha=1\)
\(1+tan^2\alpha=\dfrac{1}{cos^2\alpha}\)
\(1+cos^2\alpha=\dfrac{1}{sin^2\alpha}\)
\(cos^4\alpha-sin^4\alpha=2cos^2\alpha-1\)
Bài 2: ( chỉ ghi kết quả )
a) Tìm x biết : \(\dfrac{1}{2-\dfrac{3}{4+\dfrac{5}{6-\dfrac{7}{8+\dfrac{9}{10}}}}}=\dfrac{1}{x+\dfrac{1}{3+\dfrac{1}{5}}}+\dfrac{1}{1+\dfrac{1}{1+\dfrac{1}{2}}}\)
b) Tính: ( kết quả lấy 4 chữ số thập phân)
\(P=\dfrac{\sin^390^0-\cot^330^0-\cos^245^0+\tan20^0}{2\sqrt{7}+\sin108^0\cos32^0\tan64^0}\)
cho tam giác ABC có 3 góc nhọn và 3 đường cao AH,BE,CF . c/m \(\dfrac{s_{HEF}}{s_{ABC}}=1-cos^2(A-cos^2(B-cos^2(C\)