ta có a+ b = c + d
=> b.(a+b) = b(c+d) => a.b + b2 = bc + bd mà ab = cd + 1 nên
cd + 1 + b2 = bc + bd => bc - cd + bd - b2 = 1 => c(b - d) + b.(d - b) = 1 => (c - b)(b - d) = 1 . Vì a, b, c, d nguyên nên c - b và b - d cũng nguyên. do đó c - b = b - d = 1 hoặc c - b = b -d = -1
c - b = b - d => c + d = 2.b Mà c + d = a+ b => 2.b = a+ b => b = a => đpcm
Từ a+b = c+d => a=c+d-b Từ 2 điều này => (c+d-b).b+1=cd
Mà ab+1=cd cb+db-\(b^2\)+1=cd
=> cb+db-\(b^2\)-cd=-1
Hay \(b^2\)-cd-cb-db=1
=> ( \(b^2\)-cb)-(db-cd)=1
=> b(b-c)-d(b-c)=1
=> (b-c).(b-d)=1
Vì a,b,c,d \(\in\) Z => \(\left\{{}\begin{matrix}b-c\in Z\\b-d\in Z\end{matrix}\right.\)
=> b-c=b-d=1
Hoặc b-c=b-d=-1
=> c=d hoặc d=c
Vậy c=d(ĐPCM)