a) Thực hiện phép chia đa thức cho đa thức bth
Được dư cuối là 3
Vậy để f(x) chia hết cho g(x) thì \(3⋮x^2+x+1\)
\(\Rightarrow x^2+x+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\) Do \(x^2+x+1>0\)
Ta có bảng :
\(x^2+x+1\) | \(x\) | Kết luận |
1 | 0 hoặc -1 | Nhận |
3 | 1 hoặc -2 | Nhận |
Vậy \(x\in\left\{0;1;-1;-2\right\}\) thì \(f\left(x\right)⋮g\left(x\right)\)
b)Ta có : f(x)=(x+2)(x+4)(x+6)(x+8)+2020
=(x+2)(x+8)(x+4)(x+6)+2020
=(x2+10x+16)(x2+10x+24)+2020
Đặt a=x2+10x+16
=> f(x)=a(a+8)+2020
=a2+8a+2020 = a2+3a+5a+15+2005
=a(a+3)+5(a+3)+2005=(a+5)(a+3) +2005
Thay ngược lại ta có : f(x)= (x2+10x+21)(x2+10x+19)+2005
Vì (x2+10x+21)(x2+10x+19) \(⋮\) (x2+10x+21)
=> (x2+10x+21)(x2+10x+19)+2005:(x2+10x+21) dư 2005
Vậy f(x) chia g(x) dư 2005
2) a) \(x^3+y^3-3xy=1\)
Đổi thành -1 chắc dễ hơn :v