Bài 1
a, Ta có
A = x2 + 6x + 13
⇒ A = (x2 + 6x + 9) + 4
⇒ A = (x + 3)2 + 4
Vì (x + 3)2 ≥ 0 với ∀ x ∈ R
⇒ (x + 3)2 + 4 ≥ 4 > 0 với ∀ x ∈ R
⇒ A > 0 với ∀ x ∈ R (đpcm)
b, B = 2x2 + 4y2 - 4x + 4xy + 13
⇒ B = (2x2 - 4x + 2) + (4y2 + 4xy + 1) + 8
⇒ B = 2 (x2 - 2x + 1) + (2y + 1)2 + 8
⇒ B = 2 (x - 1)2 + (2y + 1)2 + 8
Vì \(\left\{{}\begin{matrix}2\left(x-1\right)^2\ge0\text{ với ∀ x ∈ R}\\\left(2y+1\right)^2\ge0\text{ với ∀ y ∈ R}\end{matrix}\right.\)
⇒ 2 (x - 1)2 + (2y + 1)2 ≥ 0 với ∀ x, y ∈ R
⇒ 2 (x - 1)2 + (2y + 1)2 + 8 ≥ 8 với ∀ x, y ∈ R
⇒ B ≥ 8 với ∀ x, y ∈ R
Dấu " = " xảy ra
⇒ 2 (x - 1)2 + (2y + 1)2 = 0
Mà \(\left\{{}\begin{matrix}2\left(x-1\right)^2\ge0\text{ với ∀ x ∈ R}\\\left(2y+1\right)^2\ge0\text{ với ∀ y ∈ R}\end{matrix}\right.\)
nên : Để 2 (x - 1)2 + (2y + 1)2 = 0
⇒ \(\left\{{}\begin{matrix}2\left(x-1\right)^2=0\text{ }\\\left(2y+1\right)^2=0\text{ }\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x-1=0\\2y+1=0\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x=0+1\\2y=0-1\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x=1\\2y=-1\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x=1\\y=\dfrac{-1}{2}\end{matrix}\right.\)
Vậy giá trị nhỏ nhất của B là 8 tại \(\left\{{}\begin{matrix}x=1\\y=\dfrac{-1}{2}\end{matrix}\right.\)
Chúc bạn học tốt!!!