Bài 1: a, b, c là 3 cạnh của tam giác. CMR:
\(\dfrac{a^2}{b+c-a}+\dfrac{b^2}{c+a-b}+\dfrac{c^2}{a+b-c}\ge a+b+c\)
Bài 2: a, b là số dương. CMR:
\(ab+\dfrac{a}{b}+\dfrac{b}{a}\ge a+b+1\)
Bài 3: a,b,c>0 thỏa mãn: (a+c)(b+c)=1. CMR:
\(\dfrac{1}{\left(a-b\right)^2}+\dfrac{1}{\left(a+c\right)^2}+\dfrac{1}{\left(b+c\right)^2}\ge4\)
Bài 1:
Vì $a,b,c$ là 3 cạnh tam giác nên \(b+c-a; c+a-b; a+b-c>0\)
Áp dụng BĐT AM-GM cho các số dương:
\(\frac{a^2}{b+c-a}+(b+c-a)\geq 2\sqrt{a^2}=2a\)
\(\frac{b^2}{a+c-b}+(a+c-b)\geq 2\sqrt{b^2}=2b\)
\(\frac{c^2}{a+b-c}+(a+b-c)\geq 2\sqrt{c^2}=2c\)
Cộng theo vế và rút gọn:
\(\Rightarrow \frac{a^2}{b+c-a}+\frac{b^2}{c+a-b}+\frac{c^2}{a+b-c}+a+b+c\geq 2(a+b+c)\)
\(\Rightarrow \frac{a^2}{b+c-a}+\frac{b^2}{c+a-b}+\frac{c^2}{a+b-c}\geq a+b+c\) (đpcm)
Dấu "=" xảy ra khi $a=b=c$
Bài 2:
Áp dụng BĐT AM-GM cho các số dương ta có:
\(ab+\frac{a}{b}\geq 2\sqrt{ab.\frac{a}{b}}=2a\)
\(ab+\frac{b}{a}\geq 2\sqrt{ab.\frac{b}{a}}=2b\)
\(\frac{a}{b}+\frac{b}{a}\geq 2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\)
Cộng theo vế và rút gọn:
\(\Rightarrow 2(ab+\frac{a}{b}+\frac{b}{a})\geq 2(a+b+1)\)
\(\Rightarrow ab+\frac{a}{b}+\frac{b}{a}\geq a+b+1\)
Ta có đpcm
Dấu "=" xảy ra khi $a=b=1$
Bài 3:
Vì \((a+c)(b+c)=1\) nên:
\(A=\frac{1}{(a-b)^2}+\frac{1}{(a+c)^2}+\frac{1}{(b+c)^2}=\frac{1}{[(a+c)-(b+c)]^2}+\frac{(b+c)^2+(c+a)^2}{(a+c)^2.(b+c)^2}\)
\(=\frac{1}{(a+c)^2+(b+c)^2-2(a+c)(b+c)}+\frac{(b+c)^2+(c+a)^2}{[(a+c)(b+c)]^2}\)
\(=\frac{1}{(a+c)^2+(b+c)^2-2}+(b+c)^2+(c+a)^2-2+2\)
Áp dụng BĐT AM-GM:
\(\frac{1}{(a+c)^2+(b+c)^2-2}+[(b+c)^2+(c+a)^2-2]\geq 2\)
\(\Rightarrow A\geq 2+2=4\) (đpcm)