1)Nhân vào ta sẽ đc VT=\(x^4-y^4+x^2y^2-x^2y^2+xy^3-x^3y-xy^3+x^3y=x^4-y^4\)
2) \(x\left(x+2\right)\left(x^2+2x+2\right)+1=\left(x^2+2x\right)\left(x^2+2x+2\right)\)
Đặt y=\(x^2+2x\).Ta sẽ đc : \(y\left(y+2\right)+1=y^2+2y+1=\left(y+1\right)^2=\left(x^2+2x+1\right)^2=\left(x+1\right)^4\)
3/Theo đề ta có: \(a^2+b^2+c^2=ab+bc+ca\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)-2\left(ab+bc+ca\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\)\(\Leftrightarrow a=b=c\)
Vậy Ta có \(a^4+b^4+c^4=3a^4=3\Rightarrow a=b=c=1\)