Gọi số cây 3 tổ lần lượt là a,b,c (cây) (a,b,c\(\in\)N*)
Theo đề ta có:
\(a+b+c=179\)
\(\frac{a}{6}=\frac{b}{11};\frac{a}{7}=\frac{c}{10}\)\(\Rightarrow\frac{a}{42}=\frac{b}{77};\frac{a}{42}=\frac{c}{60}\)\(\Rightarrow\frac{a}{42}=\frac{b}{77}=\frac{c}{60}\)
Áp dụng tc dãy tỉ số bằng nhau ta có:
\(\frac{a}{42}=\frac{b}{77}=\frac{c}{60}=\frac{a+b+c}{42+77+60}=\frac{179}{179}=1\)
\(\Rightarrow\begin{cases}\frac{a}{42}=1\Rightarrow1\cdot42=42\\\frac{b}{77}=1\Rightarrow b=1\cdot77=77\\\frac{c}{60}=1\Rightarrow c=1\cdot60=60\end{cases}\)(thỏa mãn)
Vậy số cây 3 tổ lần lượt là 42 cây, 77 cây, 60 cây
Gọi số cây 3 tổ h/s trồng được lần lượt là
a,b,c (a,b,c ϵ N*)
Theo bài ta có: \(\frac{a}{6}\) = \(\frac{b}{11}\) ; \(\frac{a}{7}\) = \(\frac{c}{10}\)
Ta có: \(\frac{a}{6}\) = \(\frac{b}{11}\) \(\Rightarrow\) \(\frac{a}{42}\) = \(\frac{b}{77}\) ; \(\frac{a}{7}\) = \(\frac{c}{10}\) \(\Rightarrow\) \(\frac{a}{42}\) = \(\frac{c}{60}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{42}\) = \(\frac{b}{77}\) = \(\frac{c}{60}\) = \(\frac{a+b+c}{42+77+60}\) = \(\frac{179}{179}\) = 1
\(\Rightarrow\) \(\begin{cases}a=42\\b=77\\c=60\end{cases}\)
Vậy tổ 1 trồng được 42 cây
tổ 2 trồng được 77 cây
tổ 3 trồng được 60 cây